Skip to main content

Construction of Cell Type-Specific Logic Models of Signaling Networks Using CellNOpt

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 930))

Abstract

Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen C, Linding R (2010) Simplistic pathways or complex networks? Curr Opin Genet Dev 20:15–22

    Article  PubMed  CAS  Google Scholar 

  2. Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics 4:1569–1590

    Article  PubMed  CAS  Google Scholar 

  3. Kestler HA, Wawra C, Kracher B, Kuhl M (2008) Network modeling of signal transduction: establishing the global view. Bioessays 30:1110–1125

    Article  PubMed  CAS  Google Scholar 

  4. Heinrichs A, Kritikou E, Pulverer B, Raftopoulou M (eds) (2006) Systems biology: a user’s guide. Nature Publishing Group, New York, NY

    Google Scholar 

  5. Boutros PC, Okey AB (2005) Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief Bioinform 6:331–343

    Article  PubMed  CAS  Google Scholar 

  6. D’Haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23:1499–1501

    Article  PubMed  Google Scholar 

  7. Janes KA, Albeck JG, Gaudet S, Sorger P, Lauffenburger DA, Yaffe MB (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653

    Article  PubMed  CAS  Google Scholar 

  8. Miller-Jensen K, Janes K, Brugge J, Lauffenburger D (2007) Common effector processing mediates cell-specific responses to stimuli. Nature 448:604–608

    Article  PubMed  CAS  Google Scholar 

  9. Alexopoulos L, Saez-Rodriguez J, Cosgrove B, Lauffenburger D, Sorger P (2010) Networks inferred from biochemical data reveal profound differences in Toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol Cell Proteomics 9:1849–1865

    Article  PubMed  CAS  Google Scholar 

  10. Markowetz F, Spang R (2007) Inferring cellular networks—a review. BMC Bioinform 8(Suppl 6):S5

    Article  Google Scholar 

  11. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78

    PubMed  Google Scholar 

  12. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 5:e9202

    Article  PubMed  Google Scholar 

  13. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  PubMed  CAS  Google Scholar 

  14. Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7:813–819

    Article  PubMed  CAS  Google Scholar 

  15. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239

    PubMed  Google Scholar 

  16. Becker V, Schilling M, Bachmann J, Baumann U, Raue A, Maiwald T, Timmer J, Klingmuller U (2010) Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 328:1404–1408

    Article  PubMed  CAS  Google Scholar 

  17. Rangamani P, Iyengar R (2008) Modelling cellular signalling systems. Essays Biochem 45:83–94

    Article  PubMed  CAS  Google Scholar 

  18. Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6:e1000702

    Article  PubMed  Google Scholar 

  19. Pandey S, Wang RS, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372

    Article  PubMed  Google Scholar 

  20. Samaga R, Von Kamp A, Klamt S (2010) Computing combinatorial intervention strategies and failure modes in signaling networks. J Comput Biol 17:39–53

    Article  PubMed  CAS  Google Scholar 

  21. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224

    Article  PubMed  CAS  Google Scholar 

  22. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25:2466–2472

    Article  PubMed  CAS  Google Scholar 

  23. Mitsos A, Melas IN, Siminelakis P, Chairakai AD, Saez-Rodriguez J, Alexopoulos LG (2009) Identifying drug effects via pathway alteractions using an Interger Linear Programming optimization formulation on phosphoproteomic data. PLoS Comput Biol 5:e1000591

    Article  PubMed  Google Scholar 

  24. Saez-Rodriguez J, Alexopoulos L, Zhang MS, Morris MK, Lauffenburger DA, Sorger PK (2011) Comparative logical models of signaling networks in normal and transformed hepatocytes. Cancer Res 71:1

    Article  Google Scholar 

  25. Cosgrove B, Alexopoulos L, Hang T, Hendriks B, Sorger P, Griffith L, Lauffenburger D (2010) Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation. Mol Biosyst 6:1195–1206

    Article  PubMed  CAS  Google Scholar 

  26. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331

    Article  PubMed  Google Scholar 

  27. Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA (2011) Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comp Biol 7(3):e1001099

    Google Scholar 

  28. Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672

    Article  PubMed  CAS  Google Scholar 

  29. Maly IVE (2009) Systems biology, vol 500. Humana, New York, NY

    Book  Google Scholar 

  30. Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles ED (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform 7:56

    Article  Google Scholar 

  31. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  Google Scholar 

  32. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16

    Article  PubMed  Google Scholar 

  33. Chaouiya C, Remy E, Mosse B, Thieffry D (2003) Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. In: Benvenuit L, De Santis A, Farina L (eds) Lecture notes in control and information sciences, positive systems. Springer, Berlin, pp 119–126

    Google Scholar 

  34. Gonzalez AG, Naldi A, Sanchez L, Thieffry D, Chaouiya C (2006) GINsim: a software suite for the qualitative modelling, simulation, and analysis of regulatory networks. BioSystems 84:91–100

    Article  PubMed  CAS  Google Scholar 

  35. de Jong H, Geiselmann J, Hernandez C, Page M (2003) Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19:336–344

    Article  PubMed  Google Scholar 

  36. Helikar T, Rogers JA (2009) ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists. BMC Syst Biol 3:58

    Article  PubMed  Google Scholar 

  37. Ulitsky I, Gat-Viks I, Shamir R (2008) MetaReg: a platform for modeling, analysis, and visualization of biological systems using large-scale experimental data. Genome Biol 9:R1

    Article  PubMed  Google Scholar 

  38. Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3:13

    Article  PubMed  Google Scholar 

  39. DiCara A, Garg A, DeMicheli B, Xenarios I, Mendoza L (2007) Dynamic simulation of regulatory networks using SQUAD. BMC Bioinform 8:462

    Article  Google Scholar 

  40. Wittmann D, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis F (2009) From qualitative to quantitative modeling. BMC Syst Biol 3:98

    Article  PubMed  Google Scholar 

  41. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  PubMed  CAS  Google Scholar 

  42. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  Google Scholar 

  43. Tong R (1977) A control engineering review of fuzzy systems. Automatica 13:559–569

    Article  Google Scholar 

  44. Aldridge B, Saez-Rodriguez J, Muhlich J, Sorger P, Lauffenburger DA (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/Insulin-induced signaling. PLoS Comput Biol 5:e1000340

    Article  PubMed  Google Scholar 

  45. Chen W, Niepel M, Sorger P (2010) Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 24:1861–1875

    Article  PubMed  CAS  Google Scholar 

  46. Kremling A, Saez-Rodriguez J (2007) Systems biology—an engineering perspective. J Biotechnol 129:329–351

    Article  PubMed  CAS  Google Scholar 

  47. Penny W, Stephan K, Daunizeau J, Rosa M, Friston K, Schofield T, Leff A (2010) Comparing families of dynamic causal models. PLoS Comput Biol 6:e1000709

    Article  PubMed  Google Scholar 

  48. Bauer-Mehren A, Furlong L, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290

    Article  PubMed  Google Scholar 

  49. Lachmann A, Ma’ayan A (2010) Lists2Networks: integrated analysis of gene/protein lists. BMC Bioinform 11:87

    Article  Google Scholar 

  50. Laakso M, Hautaniemi S (2010) Integrative platform to translate gene sets to networks. Bioinformatics 26:1802

    Article  PubMed  CAS  Google Scholar 

  51. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  52. Saez-Rodriguez J, Mirschel S, Hemenway R, Klamt S, Gilles ED, Ginkel M (2006) Visual setup of logical models of signaling and regulatory networks with ProMoT. BMC Bioinform 7:506

    Article  Google Scholar 

  53. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Reubenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novere N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942

    Article  PubMed  CAS  Google Scholar 

  54. Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos L, Millard B, Lauffenburger D, Sorger P (2008) Flexible informatics for linking experimental data to mathematical models via DataRail. Bioinformatics 24:840–847

    Article  PubMed  CAS  Google Scholar 

  55. Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK, Sun P, Huang S (2004) Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK Kinase 1 pathway. Cancer Res 64:4209–4217

    Article  PubMed  CAS  Google Scholar 

  56. Sander EE, van Delft S, ten Klooster JP, Reid T, van der Kammen RA, Michiels F, Collard JG (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 143:1385–1398

    Article  PubMed  CAS  Google Scholar 

  57. Fanger GR, Johnson NL, Johnson GL (1997) MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J 16:4961–4972

    Article  PubMed  CAS  Google Scholar 

  58. McDermott U, Sharma SV, Dowell L, Greninger P, Montagut C, Lamb J, Archibald H, Raudales R, Tam A, Lee D, Rothenberg SM, Supko JG, Sordella R, Ulkus LE, Iafrate AJ, Maheswaran S, Njauw CN, Tsao H, Drew L, Hanke JH, Ma XJ, Erlander MG, Gray NS, Haber DA, Settleman J (2007) Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc Natl Acad Sci U S A 104:19936–19941

    Article  PubMed  CAS  Google Scholar 

  59. Mori S, Chang JT, Andrechek ER, Potti A, Nevins JR (2009) Utilization of genomic signatures to identify phenotype-specific drugs. PLoS One 4:e6772

    Article  PubMed  Google Scholar 

  60. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, di Bernardo D (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A 107:14621–14626

    Article  PubMed  CAS  Google Scholar 

  61. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  PubMed  CAS  Google Scholar 

  62. Iskar M, Campillos M, Kuhn M, Jensen LJ, van Noort V, Bork P (2010) Drug-induced regulation of target expression. PLoS Comput Biol 6:e1000925

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Peter K. Sorger and Douglas A. Lauffenburger for guidance during the development of CellNOpt. The original development of CellNOpt was funded by NIH grants P50-GM68762 and U54-CA112967 and the DoD Institute for Collaborative Biotechnologies (http://www.icb.ucsb.edu/). We also thank Beatriz Penalver, Leonidas G. Alexopoulos, Regina Samaga, Jonathan Epperlein, Steffen Klamt for their contributions to CellNOpt, and to Camille Terfve, David Henriques, Aidan MacNamara, and Francesco Iorio for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Saez-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morris, M.K., Melas, I., Saez-Rodriguez, J. (2013). Construction of Cell Type-Specific Logic Models of Signaling Networks Using CellNOpt . In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 930. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-059-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-059-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-058-8

  • Online ISBN: 978-1-62703-059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics