Skip to main content

From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 930))

Abstract

Quantitative structure activity relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to quantitative structure in vitro–in vivo relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  PubMed  CAS  Google Scholar 

  2. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103(31):11473–11478

    Article  PubMed  CAS  Google Scholar 

  3. Cheeseman MA (2005) Thresholds as a unifying theme in regulatory toxicology. Food Addit Contam 22(10):900–906

    Article  PubMed  CAS  Google Scholar 

  4. Riley RJ, Kenna JG (2004) Cellular models for ADMET predictions and evaluation of drug-drug interactions. Curr Opin Drug Discov Devel 7(1):86–99

    PubMed  CAS  Google Scholar 

  5. Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95(1):5–12

    Article  PubMed  CAS  Google Scholar 

  6. Yang C, Valerio LG Jr, Arvidson KB (2009) Computational toxicology approaches at the US Food and Drug Administration. Altern Lab Anim 37(5):523–531

    PubMed  CAS  Google Scholar 

  7. Valerio LG Jr (2009) In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 241(3):356–370

    Article  PubMed  CAS  Google Scholar 

  8. Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR (2009) Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 5(10):1159–1174

    Article  PubMed  CAS  Google Scholar 

  9. Park MV, Lankveld DP, Loveren H van, Jong WH de (2009) The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomedicine (Lond) 4(6):669–685

    Article  CAS  Google Scholar 

  10. Durham SK, Pearl GM (2001) Computational methods to predict drug safety liabilities. Curr Opin Drug Discov Devel 4(1):110–115

    PubMed  CAS  Google Scholar 

  11. Jacobson-Kram D, Contrera JF (2007) Genetic toxicity assessment: employing the best science for human safety evaluation. Part I: early screening for potential human mutagens. Toxicol Sci 96(1):16–20

    Article  PubMed  CAS  Google Scholar 

  12. Muster W, Breidenbach A, Fischer H, Kirchner S, Muller L, Pahler A (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310

    Article  PubMed  CAS  Google Scholar 

  13. Bailey AB, Chanderbhan R, Collazo-Braier N, Cheeseman MA, Twaroski ML (2005) The use of structure-activity relationship analysis in the food contact notification program. Regul Toxicol Pharmacol 42(2):225–235

    Article  PubMed  CAS  Google Scholar 

  14. Valerio L Jr (2008) Tools for evidence-based toxicology: computational-based strategies as a viable modality for decision support in chemical safety evaluation and risk assessment. Hum Exp Toxicol 27(10):757–760

    Article  PubMed  CAS  Google Scholar 

  15. Snyder RD (2009) An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with reference to in silico predictivity. Environ Mol Mutagen 50(6):435–450

    Article  PubMed  CAS  Google Scholar 

  16. Zvinavashe E, Murk AJ, Rietjens IM (2009) On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity. Toxicol Lett 184(1):67–72

    Article  PubMed  CAS  Google Scholar 

  17. Zvinavashe E, Murk AJ, Rietjens IM (2008) Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Chem Res Toxicol 21(12):2229–2236

    Article  PubMed  CAS  Google Scholar 

  18. Yang C, Benz RD, Cheeseman MA (2006) Landscape of current toxicity databases and database standards. Curr Opin Drug Discov Devel 9(1):124–133

    PubMed  CAS  Google Scholar 

  19. Young DM, Martin TM, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct. QSAR Comb Sci 27:1337–1345

    Article  CAS  Google Scholar 

  20. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50(7):1189–1204

    Article  PubMed  CAS  Google Scholar 

  21. Richard AM, Williams CR (2002) Distributed structure-searchable toxicity (DSSTox) public database network: a proposal. Mutat Res 499(1):27–52

    Article  PubMed  CAS  Google Scholar 

  22. Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, Dellarco V, Henry T, Holderman T, Sayre P, Tan S, Carpenter T, Smith E (2009) The toxicity data landscape for environmental chemicals. Environ Health Perspect 117(5):685–695

    PubMed  CAS  Google Scholar 

  23. Yang C, Richard AM, Cross KP (2006) The Art of data mining the minefields of toxicity databases to link chemistry to biology. Curr Comput Aided Drug Des 2:135–150

    Article  CAS  Google Scholar 

  24. PubChem (2008) http://pubchem.ncbi.nlm.nih.gov/

  25. Knudsen TB, Martin MT, Kavlock RJ, Judson RS, Dix DJ, Singh AV (2009) Profiling developmental toxicity of 387 environmental chemicals using EPA’s toxicity reference database (ToxRefDB). Birth Defects Res A Clin Mol Teratol 85(5):406

    Google Scholar 

  26. Martin MT, Judson RS, Reif DM, Kavlock RJ, Dix DJ (2009) Profiling chemicals based on chronic toxicity results from the US EPA ToxRef database. Environ Health Perspect 117(3):392–399

    PubMed  CAS  Google Scholar 

  27. ToxRefDB (2010) http://actor.epa.gov/toxrefdb/faces/Home.jsp

  28. FDA Liver Side Effect (2010) http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092203.htm

  29. ChEMBL (2010) http://www.ebi.ac.uk/chembldb/index.php

  30. ToxCast (2010) http://www.epa.gov/comptox/toxcast/

  31. Fonger GC, Stroup D, Thomas PL, Wexler P (2000) TOXNET: a computerized collection of toxicological and environmental health information. Toxicol Ind Health 16(1):4–6

    Article  PubMed  CAS  Google Scholar 

  32. Shukla SJ, Huang R, Austin CP, Xia M (2010) The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today 15(23–24):997–1007

    Article  PubMed  CAS  Google Scholar 

  33. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  34. Kubinyi H (1994) Variable selection in QSAR studies. I. An evolutionary algorithm. Quant Struct Act Relat 13:285–294

    CAS  Google Scholar 

  35. So SS, Karplus M (1996) Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. J Med Chem 39(7):1521–1530

    Article  PubMed  CAS  Google Scholar 

  36. So SS, Karplus M (1996) Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors. J Med Chem 39(26):5246–5256

    Article  PubMed  CAS  Google Scholar 

  37. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Quant Struct Act Relat Comb Sci 22:69–77

    CAS  Google Scholar 

  38. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16(5–6):357–369

    Article  PubMed  CAS  Google Scholar 

  39. Norinder U (1996) Single and domain made variable selection in 3D QSAR applications. J Chemomet 10:95–105

    Article  CAS  Google Scholar 

  40. Zefirov NS, Palyulin VA (2001) QSAR for boiling points of “small” sulfides. Are the “high-quality structure-property-activity regressions” the real high quality QSAR models? J Chem Inf Comput Sci 41(4):1022–1027

    Article  PubMed  CAS  Google Scholar 

  41. Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41(14):2553–2564

    Article  PubMed  CAS  Google Scholar 

  42. Novellino E, Fattorusso C, Greco G (1995) Use of comparative molecular field analysis and cluster analysis in series design. Pharm Acta Helv 70:149–154

    Article  CAS  Google Scholar 

  43. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276

    Article  PubMed  CAS  Google Scholar 

  44. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17(2–4):241–253

    Article  PubMed  CAS  Google Scholar 

  45. Stouch TR, Kenyon JR, Johnson SR, Chen XQ, Doweyko A, Li Y (2003) In silico ADME/Tox: why models fail. J Comput Aided Mol Des 17(2–4):83–92

    Article  PubMed  CAS  Google Scholar 

  46. Johnson SR (2008) The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 48(1):25–26

    Article  PubMed  CAS  Google Scholar 

  47. Lombardo F, Gifford E, Shalaeva MY (2003) In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem 3(8):861–875

    Article  PubMed  CAS  Google Scholar 

  48. Klopman G, Zhu H, Ecker G, Chiba P (2003) MCASE study of the multidrug resistance reversal activity of propafenone analogs. J Comput Aided Mol Des 17(5–6):291–297

    Article  PubMed  CAS  Google Scholar 

  49. Stoner CL, Gifford E, Stankovic C, Lepsy CS, Brodfuehrer J, Prasad JVNV, Surendran N (2004) Implementation of an ADME enabling selection and visualization tool for drug discovery. J Pharm Sci 93(5):1131–1141

    Article  PubMed  CAS  Google Scholar 

  50. Mayer P, Reichenberg F (2006) Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environ Toxicol Chem 25(10):2639–2644

    Article  PubMed  CAS  Google Scholar 

  51. Forsby A, Blaauboer B (2007) Integration of in vitro neurotoxicity data with biokinetic modelling for the estimation of in vivo neurotoxicity. Hum Exp Toxicol 26(4):333–338

    Article  PubMed  CAS  Google Scholar 

  52. Schirmer K, Tanneberger K, Kramer NI, Volker D, Scholz S, Hafner C, Lee LE, Bols NC, Hermens JL (2008) Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Aquat Toxicol 90(2):128–137

    Article  PubMed  CAS  Google Scholar 

  53. Piersma AH, Janer G, Wolterink G, Bessems JG, Hakkert BC, Slob W (2008) Quantitative extrapolation of in vitro whole embryo culture embryotoxicity data to developmental toxicity in vivo using the benchmark dose approach. Toxicol Sci 101(1):91–100

    Article  PubMed  CAS  Google Scholar 

  54. Sjostrom M, Kolman A, Clemedson C, Clothier R (2008) Estimation of human blood LC50 values for use in modeling of in vitro-in vivo data of the ACuteTox project. Toxicol In Vitro 22(5):1405–1411

    Article  PubMed  Google Scholar 

  55. Zhu H, Ye L, Richard A, Golbraikh A, Wright FA, Rusyn I, Tropsha A (2009) A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ Health Perspect 117(8):1257–1264

    PubMed  CAS  Google Scholar 

  56. Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A (2011). Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect 119:364–370

    Google Scholar 

  57. Zhu H, Rusyn I, Richard AM, Tropsha A (2008) Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure activity relationship models of animal carcinogenicity. Environ Health Perspect 116(4):506–513

    PubMed  CAS  Google Scholar 

  58. Thomas CJ, Auld DS, Huang R, Huang W, Jadhav A, Johnson RL, Leister W, Maloney DJ, Marugan JJ, Michael S, Simeonov A, Southall N, Xia M, Zheng W, Inglese J, Austin CP (2009) The pilot phase of the NIH Chemical Genomics Center. Curr Top Med Chem 9(13):1181–1193

    Article  PubMed  CAS  Google Scholar 

  59. Xia M, Huang R, Witt KL, Southall N, Fostel J, Cho MH, Jadhav A, Smith CS, Inglese J, Portier CJ, Tice RR, Austin CP (2008) Compound cytotoxicity profiling using quantitative high-throughput screening. Environ Health Perspect 116(3):284–291

    Article  PubMed  CAS  Google Scholar 

  60. ICCVAM and NICEATM (2001) Report of the International Workshop on In Vitro Methods for Assessing Acute Systemic Toxicity. Interagency Coordinating Committee on the Validation of Alternative Methods and National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods Report 01-4499 National Institutes of Health, Bethesda, MD

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Society of Toxicology (grant number 11-0897). The author want to thank Dr. Alexander Tropsha of University of North Carolina at Chapel Hill for his help in the past five years.

Most of the research projects that were reviewed in this chapter were finished with his help and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, H. (2013). From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 930. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-059-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-059-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-058-8

  • Online ISBN: 978-1-62703-059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics