Skip to main content

Imaging Non-fluorescent Nanoparticles in Living Cells with Wavelength-Dependent Differential Interference Contrast Microscopy and Planar Illumination Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 931))

Abstract

Optical microscopy is a simple yet robust strategy to study live cellular processes. By changing the wavelength of the illumination light, different non-fluorescent nanoparticle probes can be identified and tracked dynamically inside crowded living cells with either differential interference contrast (DIC) microscopy or planar illumination microscopy (PIM). The translational and rotational dynamics of anisotropic nanoparticles can be readily extracted via the modified DIC microscope and the home-built PIM. In this protocol, the optimization procedures for DIC microscopy and PIM imaging are explained, and the sample preparation procedures to image non-fluorescent nanoparticles in living cells are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

APTES:

3-Aminopropyltriethoxysilane

DIC:

Differential interference contrast

fps:

Frames per second

LSPR:

Localized surface plasmon resonance

NA:

Numerical aperture

PIM:

Planar illumination microscopy

PLL:

Poly-l-lysine

QWP:

Quarter wave plate

ROI:

Region of interest

References

  1. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86

    Article  PubMed  CAS  Google Scholar 

  2. Nirmal M, Dabbousi BO, Bawendi MG et al (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804

    Article  CAS  Google Scholar 

  3. Love SA, Marquis BJ, Haynes CL (2008) Recent advances in nanomaterial plasmonics: fundamental studies and applications. Appl Spectrosc 62:346a–362a

    Article  PubMed  CAS  Google Scholar 

  4. Sperling RA, Rivera Gil P, Zhang F et al (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  PubMed  CAS  Google Scholar 

  5. Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  PubMed  CAS  Google Scholar 

  6. Wax A, Sokolov K (2009) Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon Rev 3:146–158

    Article  CAS  Google Scholar 

  7. Stone J, Jackson S, Wright D (2011) Biological applications of gold nanorods. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:100–109

    Article  PubMed  CAS  Google Scholar 

  8. Wang GF, Stender AS, Sun W et al (2010) Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135:215–221

    Article  PubMed  CAS  Google Scholar 

  9. Mehta SB, Sheppard CJR (2008) Partially coherent image formation in differential interference contrast (Dic) microscope. Opt Express 16:19462–19479

    Article  PubMed  Google Scholar 

  10. Allen RD, Weiss DG, Hayden JH et al (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm—evidence for an active-role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752

    Article  PubMed  CAS  Google Scholar 

  11. Sun W, Wang GF, Fang N et al (2009) Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells. Anal Chem 81:9203–9208

    Article  PubMed  CAS  Google Scholar 

  12. Sun W, Fang N, Trewyn BG et al (2008) Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem 391:2119–2125

    Article  PubMed  CAS  Google Scholar 

  13. Luo Y, Sun W, Gu Y et al (2010) Wavelength-dependent differential interference contrast microscopy: multiplexing detection using nonfluorescent nanoparticles. Anal Chem 82:6675–6679

    Article  PubMed  CAS  Google Scholar 

  14. Gu Y, Sun W, Wang G et al (2011) Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. J Am Chem Soc 133:5720–5723

    Article  PubMed  CAS  Google Scholar 

  15. Stender AS, Wang GF, Sun W et al (2010) Influence of gold nanorod geometry on optical response. ACS Nano 4:7667–7675

    Article  PubMed  CAS  Google Scholar 

  16. Wang GF, Sun W, Luo Y et al (2010) Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy. J Am Chem Soc 132:16417–16422

    Article  PubMed  CAS  Google Scholar 

  17. Ha JW, Sun W, Wang G et al (2011) Differential interference contrast polarization anisotropy for tracking rotational dynamics of gold nanorods. Chem Commun 47:7743–7745

    Article  CAS  Google Scholar 

  18. Louit G, Asahi T, Tanaka G et al (2009) Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by rayleigh light scattering microscopy. J Phys Chem C 113:11766–11772

    Article  CAS  Google Scholar 

  19. He H, Ren JC (2008) A novel evanescent wave scattering imaging method for single gold particle tracking in solution and on cell membrane. Talanta 77:166–171

    Article  PubMed  CAS  Google Scholar 

  20. Ueno H, Nishikawa S, Iino R et al (2010) Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J 98:2014–2023

    Article  PubMed  CAS  Google Scholar 

  21. Xiao L, Qiao Y, He Y et al (2011) Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy. J Am Chem Soc 133:10638–10645

    Article  PubMed  CAS  Google Scholar 

  22. Swoger J, Huisken J, Stelzer EHK (2003) Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt Lett 28:1654–1656

    Article  PubMed  Google Scholar 

  23. Engelbrecht CJ, Stelzer EHK (2006) Resolution enhancement in a light-sheet-based microscope (Spim). Opt Lett 31:1477–1479

    Article  PubMed  Google Scholar 

  24. Keller PJ, Schmidt AD, Wittbrodt J et al (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sun, W., Xiao, L., Fang, N. (2012). Imaging Non-fluorescent Nanoparticles in Living Cells with Wavelength-Dependent Differential Interference Contrast Microscopy and Planar Illumination Microscopy. In: Taatjes, D., Roth, J. (eds) Cell Imaging Techniques. Methods in Molecular Biology, vol 931. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-056-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-056-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-055-7

  • Online ISBN: 978-1-62703-056-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics