Skip to main content

Informing Mechanistic Toxicology with Computational Molecular Models

  • Protocol
  • First Online:
Computational Toxicology

Abstract

Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo efforts. From a molecular biophysical ansatz, we describe how 3D molecular modeling methods used to numerically evaluate the classical pair-wise potential at the chemical/biological interface can inform mechanism of action and the dose–response paradigm of modern toxicology. With an emphasis on molecular docking, 3D-QSAR and pharmacophore/toxicophore approaches, we demonstrate how these methods can be integrated with chemoinformatic and toxicogenomic efforts into a tiered computational toxicology workflow. We describe generalized protocols in which 3D computational molecular modeling is used to enhance our ability to predict and model the most relevant toxicokinetic, metabolic, and molecular toxicological endpoints, thereby accelerating the computational toxicology-driven basis of modern risk assessment while providing a starting point for rational sustainable molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Historically molecular modeling methods, stemming from roots in theoretical and computational chemistry, are composed of an ensemble of developed and thoroughly vetted computational approaches used to investigate molecular-level processes and phenomena including but not limited to molecular structure, chemical catalysis, geochemistry, interfacial chemistry, nanotechnology, conformational analysis, stereoselectivity, enzyme biochemistry, chemical reaction dynamics, solvation, molecular aggregation, and molecular design.

References

  1. Voutchkova A, Osimitz T, Anastas P (2010) Toward a comprehensive molecular design framework for reduced hazard. Chem Rev 110:5845–5882

    Article  PubMed  CAS  Google Scholar 

  2. Rusyn I, Daston G (2010) Computational toxicology: realizing the promise of the toxicity testing in the 21st century. Environ Health Perspect 118:1047–1050

    Article  PubMed  Google Scholar 

  3. Rabinowitz J, Goldsmith M, Little S, Pasquinelli M (2008) Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ Health Perspect 116:573–577

    Article  PubMed  CAS  Google Scholar 

  4. Allinger N, Burkert U (1982) Molecular mechanics. American Chemical Society, Washington, DC

    Google Scholar 

  5. Dix D, Houck K (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12

    Article  PubMed  CAS  Google Scholar 

  6. Villoutreix B, Renault N, Lagorce D, Sperandio O, Montes M, Miteva M (2007) Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 8:381–411

    Article  PubMed  CAS  Google Scholar 

  7. Ponder J, Case D (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  PubMed  CAS  Google Scholar 

  8. Pearlman D, Case D, Caldwell J, Ross W, Cheathham T, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  9. MacKerell A, Brooks B, Brooks C, Nilsson L, Roux B, Won Y, Kaplus M (1998) CHARMM: the energy function and its parameterization with an overview of the program. In: Scheyer PVR et al (eds) The encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  10. Case D, Cheatham T, Darden T, Gohlke H, Luo R, Merz K, Onufriev A, Simmerling C, Wang B, Woods R (2005) The AMBER biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  Google Scholar 

  11. Brooks B, Brooks C, Mackerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis C, Bartels S, Caflish B, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridi T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable T, Woodcock H, Wu X, Yah W, York D, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1615

    Article  PubMed  CAS  Google Scholar 

  12. Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  13. Allinger N, Yuh Y, Lii J (1989) Molecular mechanics: the MM3 force field for hydrocarbons. J Am Chem Soc 111:8551–8566

    Article  CAS  Google Scholar 

  14. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  15. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  16. Wermuth C, Ganellin C, Lindberg P, Mitscher L (1998) Glossary of terms used in medicinal chemistry. Pure Appl Chem 70:1129–1143

    Article  CAS  Google Scholar 

  17. Kubinyi H (2002) From narcosis to hyperspace: the history of QSAR. Quant Struct Act Relat 21:348–356

    Article  CAS  Google Scholar 

  18. Wold S, Ruhe A, Wold H, Dunn W (1984) The collinearity problem in linear regression—the partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 5:735–743

    Article  Google Scholar 

  19. Cramer R, Patterson D, Bunce J (1988) Comparative Molecular Field Analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  PubMed  CAS  Google Scholar 

  20. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  PubMed  CAS  Google Scholar 

  21. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243

    Article  PubMed  CAS  Google Scholar 

  22. Norinder U (1996) 3D-QSAR investigation of the Tripos benchmark steroids and some protein-tyrosine kinase inhibitors of styrene type using the TDQ approach. J Chemom 10:533–545

    Article  CAS  Google Scholar 

  23. Kurogi Y, Guner O (2001) Pharmacophore modelling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8:1035–1055

    PubMed  CAS  Google Scholar 

  24. Park J, Harris D (2003) Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics and density functional theoretical calculations. J Med Chem 46:1645–1660

    Article  PubMed  CAS  Google Scholar 

  25. Jones J, Mysinger M, Korzekwa K (2002) Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction. Drug Metab Dispos 30:7–12

    Article  PubMed  CAS  Google Scholar 

  26. Cheng Y, Prusoff W (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  27. MOE. Chemical Computing Group. Montreal, Quebec, Canada

    Google Scholar 

  28. Schrodinger, Inc. New York, NY

    Google Scholar 

  29. Cheatham T, Young M (2001) Molecular dynamics simulation of nucleic acids: successes, limitations and promise. Biopolymers 56:232–256

    Article  Google Scholar 

  30. Roterman I, Lambert M, Gibson K, Scheraga H (1989) A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. 2. Phi-Psi maps for n-acetyl alanine N′-methyl amide—comparisons, contrasts and simple experimental tests. J Biomol Struct Dyn 7:421–453

    Article  PubMed  CAS  Google Scholar 

  31. Roterman I, Gibson K, Scheraga H (1989) A comparison of the CHARMM, AMBER and ECEPP potential for peptides. 1. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9. J Biomol Struct Dyn 7:391–419

    Article  PubMed  CAS  Google Scholar 

  32. Gundertofte K, Liljefors T, Norrby P, Petterson I (1996) A comparison of conformational energies calculated by several molecular mechanics methods. J Comput Chem 17:429–449

    Article  CAS  Google Scholar 

  33. Jorgensen W, Maxwell D, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  34. Jorgensen W, Tirado-Rives J (1988) The OPLS potential functions for proteins—energy minimizations for crystals of cyclic-peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  35. Halgren T (1996) Merck molecular force field. I. Basis, form, scope parameterization and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  36. Chen Y, Zhi D (2001) Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226

    Article  PubMed  CAS  Google Scholar 

  37. Ellis L, Hou B, Kang W, Wackett L (2003) The University of Minnesota Biocatalysis/Biodegradation Database: post-genomic data mining. Nucleic Acids Res 31:262–265

    Article  PubMed  CAS  Google Scholar 

  38. MetaPrint2d http://www-metaprint2d.ch.cam.ac.uk/metaprint2d

  39. Bologa C, Olah M, Oprea T (2005) Chemical database preparation for compound acquisition or virtual screening. Methods Mol Biol 316:375

    CAS  Google Scholar 

  40. Accelrys Discovery Suite, Accelrys, Inc. San Diego, CA

    Google Scholar 

  41. Sybyl. Tripos, Inc. St. Louis, MO

    Google Scholar 

  42. Schwede T, Sali A, Honig B, Levitt M, Berman H, Jones D, Brenner S, Burley S, Das R, Dokholyan N, Dunbrack R, Fidelis K, Fiser A, Godzik A, Huang Y, Humblet C, Jacobsen M, Joachimiak A, Krystek S, Kortemme T, Kryshtafovych A, Montelione G, Moult J, Murray D, Sanchez R, Sosinick T, Standley D, Stouch T, Vajda S, Vasquez M, Westbrook J, Wilson I (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure 17:151–159

    Article  PubMed  CAS  Google Scholar 

  43. Irwin J (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22:193–199

    Article  PubMed  CAS  Google Scholar 

  44. Cross J, Thompson D, Rai B, Baber J, Fan K, Hu Y, Humblet C (2009) Comparison of several molecuclar docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  PubMed  CAS  Google Scholar 

  45. Cherkasov A, Fuqiang B, Li Y, Fallahi M, Hammond G (2006) Progressive docking: a hybrid QSAR/Docking approach for accelerating in silico high throughput screening. J Med Chem 49:7466–7478

    Article  PubMed  CAS  Google Scholar 

  46. Peterson S (2007) Improved CoMFA modeling by optimization of settings: toward the design of inhibitors of the HCV NS3 protease. Uppsala University, Uppsala

    Google Scholar 

  47. Norinder U (1998) Recent progress in CoMFA methodology and related techniques. Perspect Drug Discov Des 12/13/14:25–39

    Article  CAS  Google Scholar 

  48. Kim K, Grecco G, Novellino E (1998) A critical review of recent CoMFA applications. Perspect Drug Discov Des 12/13/14:257–315

    Article  CAS  Google Scholar 

  49. Rosen J, Lovgren A, Kogej T, Muresan S, Gottfries J, Backlund A (2009) ChemGPS-NPWeb: chemical space navigation tool. J Comput Aided Mol Des 23:253–259

    Article  PubMed  CAS  Google Scholar 

  50. Larsson J, Gottfries J, Muresan S, Backlund A (2007) ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 70:789–794

    Article  PubMed  CAS  Google Scholar 

  51. Ekins S et al (2002) Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol 61:964

    Article  Google Scholar 

  52. Thorsteinson N, Ban F, Santos-Filho O, Tabaei S, Miguel-Queralt S, Underhill C, Cherkasov A, Hammond G (2009) In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin. Toxicol Appl Pharmacol 234:47–57

    Article  PubMed  CAS  Google Scholar 

  53. Perry J, Goldsmith M, Peterson M, Beratan D, Wozniak G, Ruker F, Simon J (2004) Structure of the ochratoxin A binding site within human serum albumin. J Phys Chem B 108:16960–16964

    Article  CAS  Google Scholar 

  54. Aureli L, Cruciani G, Cesta M, Anacardio R, De Simone L, Moriconi A (2005) Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach. J Med Chem 48:2469–2479

    Article  PubMed  CAS  Google Scholar 

  55. Ekins S, de Groot M, Jones J (2001) Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab Dispos 29:936–944

    PubMed  CAS  Google Scholar 

  56. Ekins S, Erickson J (2002) A pharmacophore for human pregnane X receptor ligands. Drug Metab Dispos 30:96–99

    Article  PubMed  CAS  Google Scholar 

  57. Lewis D (2002) Molecular modeling of human cytochrome P450-substrate interactions. Drug Metab Rev 34:55–67

    Article  PubMed  CAS  Google Scholar 

  58. Hirono S, Nakagome L, Imai R, Maeda K, Kusuhara H, Sugiyama Y (2005) Estimation of the three-dimensional pharmacophore of ligands for rat multidrug-resistance-associated protein 2 using ligand-based drug design techniques. Pharm Res 22:260–269

    Article  PubMed  CAS  Google Scholar 

  59. DeGorter M, Conseil G, Deeley R, Campbell R, Cole S (2008) Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochem Biophys Res Commun 365:29–34

    Article  PubMed  CAS  Google Scholar 

  60. Rabinowitz J, Little S, Laws S, Goldsmith M (2009) Molecular modeling for screening environmental chemicals for estrogenicity: use of the toxicant-target approach. Chem Res Toxicol 22:1594–1602

    Article  PubMed  CAS  Google Scholar 

  61. Hirst W, Abrahamsen B, Blaney F, Calver A, Aloj L, Price G, Medhurst A (2003) Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64:1295–1308

    Article  PubMed  CAS  Google Scholar 

  62. http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=466705

  63. http://www.epa.gov/ncct/bosc_review/2009/posters/2-06_Rabinowitz_CompTox_BOSC09.pdf

  64. Goldsmith M, Little S, Reif D, Rabinowitz J Digging deeper into deep data: molecular docking as a hypothesis-driven biophysical interrogation system in computational toxicology

    Google Scholar 

  65. http://molprobity.biochem.duke.edu

  66. http://xray.bmc.uu.se/valid/density/form1.html

  67. http://www.biop.ox.ac.uk/coot

  68. http://pmvbase.blogspot.com/2009/04/electron-density-map.html

  69. http://mgltools.scrips.edu/documentation/tutorial/python-molecular-viewer

  70. http://spdbv.vital.it.ch

  71. Irwin J, Shoichet B, Mysinger M, Huang N, Colizzi F, Wassam P, Cao Y (2009) Automated docking screens: a feasibility study. J Med Chem 52:5712–5720

    Article  PubMed  CAS  Google Scholar 

  72. Bioclipse. Proteometric Group, Department of Pharmaceutical Biosciences, Uppsala University, Sweden & Cheminformatics and Metabolism Team, European Bioinformatics Institute (EMBI)

    Google Scholar 

  73. Taverna. School of Computer Science, University of Manchester, UK

    Google Scholar 

  74. www.knime.org

Download references

Acknowledgments

Michael-Rock Goldsmith would like to thank James Rabinowitz and Stephen Little (from the US-EPA’s National Center for Computational Toxicology) for providing mentorship and assistance during his postdoctoral research, and providing the environment to explore molecular docking in the context of toxicology while providing insight and valuable discussion in the development of the in-house in silico chemical genomics initiative at the US-EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goldsmith, M.R. et al. (2012). Informing Mechanistic Toxicology with Computational Molecular Models. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics