Skip to main content

Computational Toxicology: Application in Environmental Chemicals

  • Protocol
  • First Online:
Computational Toxicology

Abstract

This chapter provides an overview of computational models that describe various aspects of the source-to-health effect continuum. Fate and transport models describe the release, transportation, and transformation of chemicals from sources of emission throughout the general environment. Exposure models integrate the microenvironmental concentrations with the amount of time an individual spends in these microenvironments to estimate the intensity, frequency, and duration of contact with environmental chemicals. Physiologically based pharmacokinetic (PBPK) models incorporate mechanistic biological information to predict chemical-specific absorption, distribution, metabolism, and excretion. Values of parameters in PBPK models can be measured in vitro, in vivo, or estimated using computational molecular modeling. Computational modeling is also used to predict the respiratory tract dosimetry of inhaled gases and particulates [computational fluid dynamics (CFD) models], to describe the normal and xenobiotic-perturbed behaviors of signaling pathways, and to analyze the growth kinetics of preneoplastic lesions and predict tumor incidence (clonal growth models).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM (1998) 1998 Annual book of ASTM standards: standard guide for remediation of ground water by natural attenuation at petroleum release sites (Designation: E 1943-98), vol 11.04. American Society for Testing and Materials, West Conshohocken, pp 875–917

    Google Scholar 

  2. Williams PRD, Hubbell WBJ, Weber E et al (2010) An overview of exposure assessment models used by the U.S. Environmental Protection Agency. In: Hanrahan G (ed) Modeling of pollutants in complex environmental systems, vol 2. ILM Publications, St Albans

    Google Scholar 

  3. US EPA (1992) Guidelines for exposure assessment. EPA/600/Z-92/001. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  4. Zartarian VG, Xue J, Ozkaynak H, Dang W, Glen G, Smith L, Stallings C (2006) A probabilistic arsenic exposure assessment for children who contact CCA-treated playsets and decks, Part 1: model methodology, variability results, and model evaluation. Risk Anal 26(2):515–531

    Article  PubMed  Google Scholar 

  5. Glen G, Smith L, Isaacs K, Mccurdy T, Langstaff J (2008) A new method of longitudinal diary assembly for human exposure modeling. J Expo Sci Environ Epidemiol 18(3):299–311

    Article  PubMed  Google Scholar 

  6. Tran NL, Barraj L, Smith K, Javier A, Burke T (2004) Combining food frequency and survey data to quantify long-term dietary exposure: a methyl mercury case study. Risk Anal 24(1):19–30

    Article  PubMed  Google Scholar 

  7. Song C, Qu Z, Blumm N, Barabasi AL (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    Article  PubMed  CAS  Google Scholar 

  8. US EPA (1997) Exposure factors handbook. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/NCEA/pdfs/efh/front.pdf

  9. Watanabe PG, Gehring PJ (1976) Dose-dependent fate of vinyl chloride and its possible relationship to oncogenicity in rats. Environ Health Perspect 17:145–152

    Article  PubMed  CAS  Google Scholar 

  10. Reddy MB, Yang RSH, Clewell HJ, Andersen ME (2005) Physiologically based pharmacokinetic modeling: science and applications. Wiley, Hoboken

    Book  Google Scholar 

  11. Emmen HH, Hoogendijk EM, Klopping-Ketelaars WA, Muijser H, Duisterrnaat E, Ravensberg JC, Alexander DJ, Borkhataria D, Rusch GM, Schmit B (2000) Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3,3-heptafluoropropane) following whole-body exposure. Regul Toxicol Pharmacol 32(1):22–35

    Article  PubMed  CAS  Google Scholar 

  12. Ernstgard L, Andersen M, Dekant W, Sjogren B, Johanson G (2010) Experimental exposure to 1,1,1,3,3-pentafluoropropane (HFC-245fa): uptake and disposition in humans. Toxicol Sci 113(2):326–336

    Article  PubMed  CAS  Google Scholar 

  13. Sexton K, Kleffman DE, Cailahan MA (1995) An introduction to the National Human Exposure Assessment Survey (NHEXAS) and related phase I field studies. J Expo Anal Environ Epidemiol 5(3):229–232

    PubMed  CAS  Google Scholar 

  14. Shin BS, Hwang SW, Bulitta JB, Lee JB, Yang SD, Park JS, Kwon MC, do Kim J, Yoon HS, Yoo SD (2010) Assessment of bisphenol A exposure in Korean pregnant women by physiologically based pharmacokinetic modeling. J Toxicol Environ Health A 73(21–22):1586–1598

    Article  PubMed  CAS  Google Scholar 

  15. Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS (2007) An observational study of the potential exposures of preschool to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ Res 103(1):9–20

    Article  PubMed  CAS  Google Scholar 

  16. Andersen ME (2003) Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol Lett 138(1–2):9–27

    Article  PubMed  CAS  Google Scholar 

  17. Rapaport DC (2004) The art of molecular dynamics simulation, 2nd edn. Cambridge University, New York

    Book  Google Scholar 

  18. Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27(11):1350–1359

    PubMed  CAS  Google Scholar 

  19. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283(1):46–58

    PubMed  CAS  Google Scholar 

  20. Tornero-Velez R, Mirfazaelina A, Kim KB, Anand SS, Kim HJ, Haines WT, Bruckner JV, Fisher JW (2010) Evaluation of deltamethrin kinetics and dosimetry in the maturing rats using a PBPK model. Toxicol Appl Pharmacol 244(2):208–217

    Article  PubMed  CAS  Google Scholar 

  21. Böhm G (1996) New approaches in molecular structure prediction. Biophys Chem 59(1–2):1–32

    Article  PubMed  Google Scholar 

  22. Fielden MR, Matthews JB, Fertuck KC et al (2002) In silico approaches to mechanistic and predictive toxicology: an introduction to bioinformatics for toxicologists. Crit Rev Toxicol 32(2):67–112

    Article  PubMed  CAS  Google Scholar 

  23. Marrone TJ, Briggs JM, McCammon JA (1997) Structure-based drug design: computational advances. Annu Rev Pharmacol Toxicol 37:71–90

    Article  PubMed  CAS  Google Scholar 

  24. Leo A, Handsch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71(6):525–616

    Article  CAS  Google Scholar 

  25. Valko K (2002) Measurements and predictions of physicochemical properties. In: Darvas F, Dorman G (eds) High-throughput ADMETox estimation. Eaton Publishing, Westborough

    Google Scholar 

  26. Topliss JG (ed) (1983) Quantitative structure-activity relationships of drugs. Academic, New York

    Google Scholar 

  27. Cronin MTD, Dearden JC, Duffy JC, Edwards R, Manga N, Worth AP, Worgan ADP (2002) The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ Res 13:167–176

    Article  PubMed  CAS  Google Scholar 

  28. Pratt WB, Taylor P (eds) (1990) Principles of drug action. Churchill-Livingstone, Inc, New York

    Google Scholar 

  29. Rabinowitz JR, Little S, Laws SC, Goldsmith R (2009) Molecular modeling for screening environmental chemicals for estrogenicity: use of the toxicant-target approach. Chem Res Toxicol 22(9):1594–1602

    Article  PubMed  CAS  Google Scholar 

  30. Allen MP, Tildesley DJ (2002) Computer simulations of liquids. Oxford University, New York

    Google Scholar 

  31. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  PubMed  CAS  Google Scholar 

  32. Colombo MC, Guidoni L, Laio A, Magistrato A, Maurer P, Piana S, Röhrig U, Spiegel K, Sulpizi M, VandeVondele J, Zumstein M, Röthlisberger U (2002) Hybrid QM/MM Carr-Parrinello simulations of catalytic and enzymatic reactions. CHIMIA 56(1–2):13–19

    Article  CAS  Google Scholar 

  33. Geva E, Shi Q, Voth GA (2001) Quantum-mechanical reaction rate constants from centroid molecular dynamics simulations. J Chem Phys 115:9209–9222

    Article  CAS  Google Scholar 

  34. Prezhdo OV, Rossky PJ (1997) Evaluation of quantum transition rates from quantum classical molecular dynamics simulation. J Chem Phys 107:5863

    Article  CAS  Google Scholar 

  35. Truhlar DG, Garrett BC (1980) Variational transition-state theory. Acc Chem Res 13:440–448

    Article  CAS  Google Scholar 

  36. Tuckerman M, Laasonen K, Sprik M, Parrinello M (1995) Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J Chem Phys 103:150–161

    Article  CAS  Google Scholar 

  37. Wang H, Sun X, Miller WH (1998) Semiclassical approximations for trhe calculation of thermal rate constants for chemical reactions in complex molecular systems. J Phys Chem 108(23):9726–9736

    Article  CAS  Google Scholar 

  38. Kimbell JS, Gross EA, Joyner DR, Godo MN, Morgan KT (1993) Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol Appl Pharmacol 121:253–263

    Article  PubMed  CAS  Google Scholar 

  39. Overton JH, Kimbell JS, Miller FJ (2001) Dosimetry modeling of inhaled formaldehyde: the human respiratory tract. Toxicol Sci 64:122–134

    Article  PubMed  CAS  Google Scholar 

  40. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  41. Bhalla US, Prahlad RT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–1023

    Article  PubMed  CAS  Google Scholar 

  42. Hoffman A, Levchenko A, Scott ML, Baltimore D (2005) The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    Article  Google Scholar 

  43. National Research Council (NRC) Committee on Toxicity and Assessment of Environmental Agents (2007) Toxicity testing in the twenty-first century: a vision and a strategy. National Academies, Washington, DC. ISBN 0-309-10989-2

    Google Scholar 

  44. Crump KS, Hoel DG, Langley CH, Peto R (1976) Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res 36:2937–2979

    Google Scholar 

  45. Moolgavkar SH, Dewanji A, Venzon DJ (1988) A stochastic two-stage model for cancer risk assessment. The hazard function and probability of tumor. Risk Anal 8:383–392

    Article  PubMed  CAS  Google Scholar 

  46. Conolly RB, Kimbell JS, Janszen D, Schlosser PM, Kalisak D, Preston J, Miller FJ (2004) Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset. Toxicol Sci 82:279–296

    Article  PubMed  CAS  Google Scholar 

  47. Adra S, Sun T, MacNeil S, Holcombe M, Smallwood R (2010) Development of a three-dimensional multiscale computational model of the human epidermis. PLoS One 5(1):e8511. doi:10.1371/journal.pone.0008511

    Article  PubMed  Google Scholar 

  48. Shah I, Wambaugh J (2010) Virtual tissues in toxicology. J Toxicol Environ Health 13(2–4):314–328

    CAS  Google Scholar 

  49. Wambaugh J, Shah I (2010) Simulating microdosimetry in a virtual hepatic lobule. PLoS Comput Biol 6(4):e1000756. doi:10.1371/journal.pcbi.1000756

    Article  PubMed  Google Scholar 

Download references

Disclaimer

The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Mei Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tan, YM. et al. (2012). Computational Toxicology: Application in Environmental Chemicals. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics