Skip to main content

Analysis of Gene-Specific and Genome-Wide Sperm DNA Methylation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 927))

Abstract

Epigenetic modifications on the DNA sequence (DNA methylation) or on chromatin-associated proteins (i.e., histones) comprise the “cellular epigenome”; together these modifications play an important role in the regulation of gene expression. Unlike the genome, the epigenome is highly variable between cells and is dynamic and plastic in response to cellular stress and environmental cues. The role of the epigenome, specifically, the methylome has been increasingly highlighted and has been implicated in many cellular and developmental processes such as embryonic reprogramming, cellular differentiation, imprinting, X chromosome inactivation, genomic stability, and complex diseases such as cancer. Over the past decade several methods have been developed and applied to characterize DNA methylation at gene-specific loci (using either traditional bisulfite sequencing or pyrosequencing) or its genome-wide distribution (microarray analysis following methylated DNA immunoprecipitation (MeDIP-chip), analysis by sequencing (MeDIP-seq), reduced representation bisulfite sequencing (RRBS), or shotgun bisulfite sequencing). This chapter reviews traditional bisulfite sequencing and shotgun bisulfite sequencing approaches, with a greater emphasis on shotgun bisulfite sequencing methods and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  2. Li E et al (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  3. Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99:451–454

    Article  PubMed  CAS  Google Scholar 

  4. Walsh CP et al (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  PubMed  CAS  Google Scholar 

  5. Dodge JE et al (2005) Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem 280:17986–17991

    Article  PubMed  CAS  Google Scholar 

  6. Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639

    Article  PubMed  CAS  Google Scholar 

  7. Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89

    Article  PubMed  CAS  Google Scholar 

  8. Jaenisch R, Jahner D (1984) Methylation, expression and chromosomal position of genes in mammals. Biochim Biophys Acta 782:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312

    Article  PubMed  CAS  Google Scholar 

  10. Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163

    Article  PubMed  CAS  Google Scholar 

  11. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  PubMed  CAS  Google Scholar 

  12. Reik W et al (2003) Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology 59:21–32

    Article  PubMed  CAS  Google Scholar 

  13. Metivier R et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    Article  PubMed  CAS  Google Scholar 

  14. Gehring M et al (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  PubMed  CAS  Google Scholar 

  15. Kangaspeska S et al (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115

    Article  PubMed  CAS  Google Scholar 

  16. Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  PubMed  CAS  Google Scholar 

  17. Clark SJ et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  PubMed  CAS  Google Scholar 

  18. Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  Google Scholar 

  19. Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  PubMed  CAS  Google Scholar 

  20. Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed  CAS  Google Scholar 

  21. Laurent L et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hammoud, S.S., Cairns, B.R., Carrell, D.T. (2013). Analysis of Gene-Specific and Genome-Wide Sperm DNA Methylation. In: Carrell, D., Aston, K. (eds) Spermatogenesis. Methods in Molecular Biology, vol 927. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-038-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-038-0_39

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-037-3

  • Online ISBN: 978-1-62703-038-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics