Advertisement

Improved Chemiluminescence Assay for Measuring Antioxidant Capacity of Seminal Plasma

  • Charles H. Muller
  • Tiffany K. Y. Lee
  • Michalina A. Montaño
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 927)

Abstract

An improved enhanced chemiluminescence antioxidant assay utilizes horseradish peroxidase conjugate and luminol to produce a cell-free oxygen radical generating system. We introduce the use of a peroxidase enzyme stabilizer to prolong the production of oxygen radicals at a steady rate. Addition of antioxidants temporarily interrupts oxygen radical generation, resulting in an inhibition curve. A linear relationship exists between the area of the inhibition curve and the molar quantity of added antioxidant used to quantify total nonenzymatic antioxidant capacity (TAC) in biological fluids including seminal plasma. We streamline the existing enhanced chemiluminescence technique by using a microtiter plate luminometer. A plate luminometer is as accurate as a tube luminometer in measuring TAC, using identical reaction volumes. As little as 1–50 μL of sample may be analyzed. A plate luminometer can detect molar Trolox equivalents as low as 12.5 μM, compared to 25 μM in tube luminometer, using identical volumes. The plate luminometer assay is made even more rapid with use of an injector.

Key words

Oxygen radicals Antioxidant Total antioxidant capacity Oxidative stress Luminometer Chemiluminescence Semen Seminal plasma 

Notes

Acknowledgments

The authors thank Ashok Agarwal, Ph.D. of the Cleveland Clinic, Cleveland, Ohio, for sending us his TAC protocol, which we modified for this study. We also thank Professor Seymour Klebanoff, M.D. Ph.D., of the Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, for allowing us to use his tube luminometer and for illuminating discussions. The Paul G. Allen Foundation for Medical Research supported this research.

References

  1. 1.
    Ceconi C et al (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221PubMedCrossRefGoogle Scholar
  2. 2.
    Lewis SE et al (1995) Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 64:868–870PubMedGoogle Scholar
  3. 3.
    Agarwal A et al (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843PubMedCrossRefGoogle Scholar
  4. 4.
    Aitken J, Fisher H (1994) Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 16:259–267PubMedCrossRefGoogle Scholar
  5. 5.
    Aitken RJ, Sawyer D (2003) The human spermatozoon – not waving but drowning. Adv Exp Med Biol 518:85–98PubMedCrossRefGoogle Scholar
  6. 6.
    Alkan I et al (1997) Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol 157:140–143PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis SE et al (1997) Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril 67:142–147PubMedCrossRefGoogle Scholar
  8. 8.
    Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48:835–850PubMedCrossRefGoogle Scholar
  9. 9.
    Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8:851–862PubMedGoogle Scholar
  10. 10.
    Ramya T et al (2011) Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Fertil Steril 95:135–140PubMedCrossRefGoogle Scholar
  11. 11.
    Shamsi MB et al (2009) DNA integrity and semen quality in men with low seminal antioxidant levels. Mutat Res 665:29–36PubMedCrossRefGoogle Scholar
  12. 12.
    Ochsendorf FR (1999) Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 5:399–420PubMedCrossRefGoogle Scholar
  13. 13.
    Pasqualotto FF et al (2000) Seminal oxidative stress in patients with chronic prostatitis. Urology 55:881–885PubMedCrossRefGoogle Scholar
  14. 14.
    Potts JM, Pasqualotto FF (2003) Seminal oxidative stress in patients with chronic prostatitis. Andrologia 35:304–308PubMedGoogle Scholar
  15. 15.
    Shahed AR, Shoskes DA (2000) Oxidative stress in prostatic fluid of patients with chronic pelvic pain syndrome: correlation with gram positive bacterial growth and treatment response. J Androl 21:669–675PubMedGoogle Scholar
  16. 16.
    Thomson LK et al (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24: 2061–2070PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142: 288–297PubMedCrossRefGoogle Scholar
  18. 18.
    Whitehead TP et al (1992) Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta 266:265–277CrossRefGoogle Scholar
  19. 19.
    Glazer AN (1990) Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168PubMedCrossRefGoogle Scholar
  20. 20.
    Wayner DD et al (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37PubMedCrossRefGoogle Scholar
  21. 21.
    Wayner DD et al (1987) The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 924:408–419PubMedCrossRefGoogle Scholar
  22. 22.
    Harrison D et al (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91: 7A–11APubMedCrossRefGoogle Scholar
  23. 23.
    Cao G et al (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–311PubMedCrossRefGoogle Scholar
  24. 24.
    Cao G et al (1995) Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 41:1738–1744PubMedGoogle Scholar
  25. 25.
    Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315PubMedGoogle Scholar
  26. 26.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76PubMedCrossRefGoogle Scholar
  27. 27.
    Mahfouz R et al (2009) Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril 91: 805–811PubMedCrossRefGoogle Scholar
  28. 28.
    Said TM et al (2003) Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl 24:676–680PubMedGoogle Scholar
  29. 29.
    Sharma RK et al (1999) The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14: 2801–2807PubMedCrossRefGoogle Scholar
  30. 30.
    Heinecke JW (2003) Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. Am J Cardiol 91:12A–16APubMedCrossRefGoogle Scholar
  31. 31.
    Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95:2131–2138PubMedGoogle Scholar
  32. 32.
    Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111:383–389PubMedGoogle Scholar
  33. 33.
    Rosen H, Klebanoff SJ (1976) Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest 58:50–60PubMedCrossRefGoogle Scholar
  34. 34.
    Strube M et al (1997) Pitfalls in a method for assessment of total antioxidant capacity. Free Radic Res 26:515–521PubMedCrossRefGoogle Scholar
  35. 35.
    Rhemrev JP et al (2000) Quantification of the nonenzymatic fast and slow TRAP in a postaddition assay in human seminal plasma and the antioxidant contributions of various seminal compounds. J Androl 21:913–920PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Charles H. Muller
    • 1
  • Tiffany K. Y. Lee
    • 1
  • Michalina A. Montaño
    • 1
  1. 1.Male Fertility Lab, Department of UrologyUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations