Skip to main content

Investigation of Protein–Protein Interactions of Single-Stranded DNA-Binding Proteins by Analytical Ultracentrifugation

  • Protocol
  • First Online:
Book cover Single-Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 922))

Abstract

Bacterial single-stranded DNA-binding (SSB) proteins are essential for DNA metabolism, since they protect stretches of single-stranded DNA and are required for numerous crucial protein–protein interactions in DNA replication, recombination, and repair. At the lagging strand of the DNA replication fork of Escherichia coli, for example, SSB contacts not only DnaG primase but also the χ subunit of DNA polymerase III, thereby facilitating the switch between primase and polymerase activity. Here, we describe a powerful method that allows the study of interactions between SSB and its binding partners by sedimentation velocity experiments in an analytical ultracentrifuge. Whenever two molecules interact, a complex of a higher mass forms that can usually be distinguished from free binding partners by its different sedimentation behavior. As an example, we show how sedimentation velocity experiments of purified proteins can be employed to determine the binding parameters of the interaction of SSB and the χ subunit of DNA polymerase III from E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porter R, Black S, Pannuri S, Carlson A (1990) Use of the Escherichia coli ssb gene to prevent bioreactor takeover by plasmidless cells. BioTechnology 8:47–51

    Article  PubMed  CAS  Google Scholar 

  2. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  PubMed  CAS  Google Scholar 

  3. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318

    Article  PubMed  CAS  Google Scholar 

  4. Genschel J, Curth U, Urbanke C (2000) Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381:183–192

    Article  PubMed  CAS  Google Scholar 

  5. Lu D, Keck JL (2008) Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc Natl Acad Sci USA 105:9169–9174

    Article  PubMed  CAS  Google Scholar 

  6. Handa P, Acharya N, Varshney U (2001) Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 276:16992–16997

    Article  PubMed  CAS  Google Scholar 

  7. Arad G, Hendel A, Urbanke C, Curth U, Livneh Z (2008) Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 283:8274–8282

    Article  PubMed  CAS  Google Scholar 

  8. Cadman CJ, McGlynn P (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32:6378–6387

    Article  PubMed  CAS  Google Scholar 

  9. Shereda RD, Reiter NJ, Butcher SE, Keck JL (2009) Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C terminus. J Mol Biol 386:612–625

    Article  PubMed  CAS  Google Scholar 

  10. Hobbs MD, Sakai A, Cox MM (2007) SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem 282:11058–11067

    Article  PubMed  CAS  Google Scholar 

  11. Glover BP, McHenry CS (1998) The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem 273:23476–23484

    Article  PubMed  CAS  Google Scholar 

  12. Kelman Z, Yuzhakov A, Andjelkovic J, O’Donnell M (1998) Devoted to the lagging strand-the χ subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17:2436–2449

    Article  PubMed  CAS  Google Scholar 

  13. Witte G, Urbanke C, Curth U (2003) DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res 31:4434–4440

    Article  PubMed  CAS  Google Scholar 

  14. Yuzhakov A, Kelman Z, O’Donnell M (1999) Trading places on DNA – a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96:153–163

    Article  PubMed  CAS  Google Scholar 

  15. Johnson A, O’Donnell M (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283–315

    Article  PubMed  CAS  Google Scholar 

  16. MacGregor IK, Anderson AL, Laue TM (2004) Fluorescence detection for the XLI analytical ultracentrifuge. Biophys Chem 108:165–185

    Article  PubMed  CAS  Google Scholar 

  17. Brown PH, Balbo A, Schuck P (2008) Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Curr Protoc Immunol Chapter 18, Unit 18.15

    Google Scholar 

  18. Urbanke C, Ziegler B, Stieglitz K (1980) Complete evaluation of sedimentation velocity experiments in the analytical ultracentrifuge. Fres Z Anal Chem 301:139–140

    Article  CAS  Google Scholar 

  19. Urbanke C, Witte G, Curth U (2005) Sedimentation velocity method in the analytical ultracentrifuge for the study of protein-protein interactions. Methods Mol Biol 305:101–114

    PubMed  CAS  Google Scholar 

  20. Krauss G, Pingoud A, Boehme D, Riesner D, Peters F, Maass G (1975) Equivalent and non-equivalent binding sites for tRNA on aminoacyl-tRNA synthetases. Eur J Biochem 55:517–529

    Article  PubMed  CAS  Google Scholar 

  21. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619

    Article  PubMed  CAS  Google Scholar 

  22. Naue N, Fedorov R, Pich A, Manstein DJ, Curth U (2011) Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Res 39:1398–1407

    Article  PubMed  CAS  Google Scholar 

  23. ProteomeLab XL-A/XL-I protein characterization system (2007) Beckman Coulter, Inc., Miami, FL

    Google Scholar 

  24. Lohman TM, Overman LB (1985) Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260:3594–3603

    PubMed  CAS  Google Scholar 

  25. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  26. Laue MT, Shah BD, Rigdeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Analytical ultracentrifugation in biochemistry and polymer science. Cambridge, UK, pp 90–125

    Google Scholar 

  27. Dam J, Schuck P (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: sedimentation coefficient distributions c(s) and asymptotic boundary profiles from Gilbert-Jenkins theory. Biophys J 89:651–666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Lidia Litz for excellent technical assistance, Dr. Claus Urbanke for valuable discussions and for reading the manuscript, and Dr. Dietmar J. Manstein for scientific and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Curth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Naue, N., Curth, U. (2012). Investigation of Protein–Protein Interactions of Single-Stranded DNA-Binding Proteins by Analytical Ultracentrifugation. In: Keck, J. (eds) Single-Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 922. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-032-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-032-8_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-031-1

  • Online ISBN: 978-1-62703-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics