Skip to main content

Bioluminescence Imaging of P. berghei Schizont Sequestration in Rodents

  • Protocol
  • First Online:
Malaria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 923))

Abstract

We describe a technology for imaging the sequestration of infected red blood cells (iRBC) of the rodent malaria parasite Plasmodium berghei both in the bodies of live mice and in dissected organs, using a transgenic parasite that expresses luciferase. Real-time imaging of sequestered iRBC is performed by measuring bioluminescence produced by the enzymatic reaction in parasites between the luciferase enzyme and its substrate luciferin injected into the mice several minutes prior to imaging. The bioluminescence signal is detected by a sensitive I-CCD photon-counting video camera. Using a reporter parasite that expresses luciferase under the control of a schizont-specific promoter (i.e., the ama-1 promoter), the schizont stage is made visible when detecting bioluminescence signals. Schizont sequestration is imaged during short-term infections with parasites that are synchronized in development or during ongoing infections. Real-time in vivo imaging of iRBC will provide increased insights into the dynamics of sequestration and its role in pathology, and can be used to evaluate strategies that prevent sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho M, White NJ (1999) Molecular mechanisms of cytoadherence in malaria. Am J Physiol 276:C1231–C1242

    PubMed  CAS  Google Scholar 

  2. Sherman IW et al (2003) Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect 5:897–909

    Article  PubMed  CAS  Google Scholar 

  3. Rogerson SJ et al (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7:105–117

    Article  PubMed  CAS  Google Scholar 

  4. Desai M et al (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7:93–104

    Article  PubMed  Google Scholar 

  5. Beeson JG, Duffy PE (2005) The immunology and pathogenesis of malaria during pregnancy. Curr Top Microbiol Immunol 297:187–227

    Article  PubMed  CAS  Google Scholar 

  6. Mackintosh CL et al (2004) Clinical features and pathogenesis of severe malaria. Trends Parasitol 20:597–603

    Article  PubMed  CAS  Google Scholar 

  7. Rasti N et al (2004) Molecular aspects of malaria pathogenesis. FEMS Immunol Med Microbiol 41:9–26

    Article  PubMed  CAS  Google Scholar 

  8. Clark IA et al (2004) Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 17:509–539

    Article  PubMed  CAS  Google Scholar 

  9. van der Heyde HC et al (2006) A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22:503–508

    Article  PubMed  Google Scholar 

  10. Miller LH et al (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  PubMed  CAS  Google Scholar 

  11. Idro R et al (2005) Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4:827–840

    Article  PubMed  Google Scholar 

  12. Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735

    Article  PubMed  CAS  Google Scholar 

  13. Mishra SK, Newton CR (2009) Diagnosis and management of the neurological complications of falciparum malaria. Nat Rev Neurol 5:189–198

    Article  PubMed  Google Scholar 

  14. Franke-Fayard B et al (2005) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci USA 102:11468–11473

    Article  PubMed  CAS  Google Scholar 

  15. Mons B et al (1985) Synchronized erythrocytic schizogony and gametocytogenesis of Plasmodium berghei in vivo and in vitro. Parasitology 91:423–430

    Article  PubMed  Google Scholar 

  16. Janse CJ, Waters AP (1995) Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today 11:138–143

    Article  PubMed  CAS  Google Scholar 

  17. Spaccapelo R et al (2010) Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol 176:205–217

    Article  PubMed  CAS  Google Scholar 

  18. Franke-Fayard B et al (2006) Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc 1:476–485

    Article  PubMed  CAS  Google Scholar 

  19. Amante FH et al (2007) A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 171:548–559

    Article  PubMed  CAS  Google Scholar 

  20. Hearn J et al (2000) Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun 68:5364–5376

    Article  PubMed  CAS  Google Scholar 

  21. Nie CQ et al (2009) IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog 5:e1000369

    Article  PubMed  Google Scholar 

  22. Neres R et al (2008) Pregnancy outcome and placenta pathology in Plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS One 3:e1608

    Article  PubMed  Google Scholar 

  23. Amante FH et al (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185:3632–3642

    Article  PubMed  CAS  Google Scholar 

  24. Avril M et al (2010) Immunization with VAR2CSA-DBL5 recombinant protein elicits broadly cross-reactive antibodies to placental Plasmodium falciparum-infected erythrocytes. Infect Immun 78:2248–2256

    Article  PubMed  CAS  Google Scholar 

  25. Rowe JA et al (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11:e16

    Article  PubMed  Google Scholar 

  26. Franke-Fayard B et al (2010) Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog 6:e1001032

    Article  PubMed  Google Scholar 

  27. Engwerda CR et al (2005) The importance of the spleen in malaria. Trends Parasitol 21:75–80

    Article  PubMed  Google Scholar 

  28. Claser C et al (2011) CD8+ T cells and IFN-gamma mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS One 6:e18720

    Article  PubMed  CAS  Google Scholar 

  29. Haque A et al (2010) CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo. PLoS Pathog 6:e1001221

    Article  PubMed  Google Scholar 

  30. Janse CJ et al (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145:60–70

    Article  PubMed  CAS  Google Scholar 

  31. Kirchgatter K, Del Portillo HA (2005) Clinical and molecular aspects of severe malaria. An Acad Bras Cienc 77:455–475

    Article  PubMed  CAS  Google Scholar 

  32. Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766

    Article  PubMed  CAS  Google Scholar 

  33. Gilks CF et al (1989) Host diet in experimental rodent malaria: a variable which can compromise experimental design and interpretation. Parasitology 98:175–177

    Article  PubMed  CAS  Google Scholar 

  34. Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2:537–542

    Article  PubMed  CAS  Google Scholar 

  35. Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16:73–78

    Article  PubMed  CAS  Google Scholar 

  36. Ntziachristos V et al (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Netherlands Organization for Scientific Research (ZonMw TOP grant number 9120_6135) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 201222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Janse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Braks, J., Aime, E., Spaccapelo, R., Klop, O., Janse, C.J., Franke-Fayard, B. (2012). Bioluminescence Imaging of P. berghei Schizont Sequestration in Rodents. In: Ménard, R. (eds) Malaria. Methods in Molecular Biology, vol 923. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-026-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-026-7_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-025-0

  • Online ISBN: 978-1-62703-026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics