Skip to main content

UV–Visible and Infrared Methods for Investigating Lipid–Rhodopsin Membrane Interactions

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

We describe experimental UV–visible and Fourier transform infrared (FTIR) spectroscopic methods for characterizing lipid–protein interactions for rhodopsin in a membrane bilayer environment. The combination of FTIR and UV–visible difference spectroscopy is used to monitor the structural and functional changes during rhodopsin activation. Investigations of how membrane lipids stabilize various rhodopsin photoproducts are analogous to mutating the protein in terms of gain or loss of function. Interpretation of the results entails a flexible surface model for explaining membrane lipid–protein interactions through material properties relevant to biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin PA, Hubbell WL (1985) Effects of lipid environment on the light-induced conformational changes of rhodopsin. 2. Roles of lipid chain length, unsaturation, and phase state. Biochemistry 24:2633–2639

    Article  PubMed  CAS  Google Scholar 

  3. Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF (1988) Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27:6469–6474

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell DC, Straume M, Miller JL, Litman BJ (1990) Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29:9143–9149

    Article  PubMed  CAS  Google Scholar 

  5. Gibson NJ, Brown MF (1993) Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–2454

    Article  PubMed  CAS  Google Scholar 

  6. Niu S-L, Mitchell DC (2005) Effect of packing density on rhodopsin stability and function in polyunsaturated membranes. Biophys J 89:1833–1840

    Article  PubMed  CAS  Google Scholar 

  7. Kusnetzow AK, Altenbach C, Hubbell WL (2006) Conformational states and dynamics of rhodopsin in micelles and bilayers. Biochemistry 45:5538–5550

    Article  PubMed  CAS  Google Scholar 

  8. Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477

    Article  PubMed  CAS  Google Scholar 

  9. Mahalingam M, Martínez-Mayorga K, Brown MF, Vogel R (2008) Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci U S A 105:17795–17800

    Article  PubMed  CAS  Google Scholar 

  10. Zaitseva E, Brown MF, Vogel R (2010) Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta IIa conformational substate. J Am Chem Soc 132:4815–4821

    Article  PubMed  CAS  Google Scholar 

  11. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX (2004) Structure of bovine ­rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  PubMed  CAS  Google Scholar 

  13. Okada T, Sugihara M, Bondar A-N, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342:571–583

    Article  PubMed  CAS  Google Scholar 

  14. Park JH, Scheerer P, Hofmann KP, Choe H-W, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–188

    Article  PubMed  CAS  Google Scholar 

  15. DeLano WL (2004) PyMOL user’s guide. DeLano Scientific, San Carlos, California, http://www.pymol.org/

    Google Scholar 

  16. Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444

    Article  PubMed  CAS  Google Scholar 

  17. Williams GD, Beach JM, Dodd SW, Brown MF (1985) Dependence of deuterium spin-lattice relaxation rates of multilamellar phospholipid dispersions on orientational order. J Am Chem Soc 107:6868–6873

    Article  CAS  Google Scholar 

  18. Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF (1987) Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2  H NMR. J Am Chem Soc 109:2600–2609

    Article  CAS  Google Scholar 

  19. Raubach RA, Franklin LK, Dratz EA (1974) A rapid method for the purification of rod outer segment disk membranes. Vision Res 14:335–337

    Article  PubMed  CAS  Google Scholar 

  20. Hong K, Knudsen PJ, Hubbell WL (1982) Purification of rhodopsin on hydroxyapatite columns, detergent exchange, and recombination with phospholipids. Methods Enzymol 81:144–150

    Article  PubMed  CAS  Google Scholar 

  21. Botelho AV, Gibson NJ, Wang Y, Thurmond RL, Brown MF (2002) Conformational energetics of rhodopsin modulated by nonlamellar forming lipids. Biochemistry 41:6354–6368

    Article  PubMed  CAS  Google Scholar 

  22. Chen PS Jr, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  23. Vogel R, Fan G-B, Sheves M, Siebert F (2000) The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study. Biochemistry 39:8895–8908

    Article  PubMed  CAS  Google Scholar 

  24. Vogel R, Fan GB, Siebert F, Sheves M (2001) Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base. Biochemistry 40:13342–13352

    Article  PubMed  CAS  Google Scholar 

  25. Knierim B, Hofmann KP, Ernst OP, Hubbell WL (2007) Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci U S A 104:20290–20295

    Article  PubMed  CAS  Google Scholar 

  26. Struts AV, Salgado GFJ, Martínez-Mayorga K, Brown MF (2011) Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 18(3):392–394

    Article  PubMed  CAS  Google Scholar 

  27. Lewis JW, Kliger DS (2000) Absorption spectroscopy in studies of visual pigments: spectral and kinetic characterization of intermediates. Methods Enzymol 315:164–178

    Article  PubMed  CAS  Google Scholar 

  28. Vogel R, Siebert F (2003) Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin. Biopolymers 72:133–148

    Article  PubMed  CAS  Google Scholar 

  29. Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ (2004) Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. J Biol Chem 279:48102–48111

    Article  PubMed  CAS  Google Scholar 

  30. Parkes JH, Liebman PA (1984) Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. Biochemistry 23:5054–5061

    Article  PubMed  CAS  Google Scholar 

  31. Ritter E, Elgeti M, Hofmann KP, Bartl FJ (2007) Deactivation and proton transfer in light-induced metarhodopsin II/metarhodopsin III conversion. A time-resolved Fourier transform infrared spectroscopic study. J Biol Chem 282:10720–10730

    Article  PubMed  CAS  Google Scholar 

  32. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci U S A 105:7439–7444

    Article  PubMed  CAS  Google Scholar 

  33. Soubias O, Teague WE Jr, Hines KG, Mitchell DC, Gawrisch K (2010) Contribution of membrane elastic energy to rhodopsin function. Biophys J 99:817–824

    Article  PubMed  CAS  Google Scholar 

  34. Deese AJ, Dratz EA, Brown MF (1981) Retinal rod outer segment lipids form bilayers in the presence and absence of rhodopsin: a 31P NMR study. FEBS Lett 124:93–99

    Article  PubMed  CAS  Google Scholar 

  35. Nielsen C, Andersen OS (2000) Inclusion-induced bilayer deformations: effects of monolayer equililbrium curvature. Biophys J 79:2583–2604

    Article  PubMed  CAS  Google Scholar 

  36. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703

    Article  PubMed  CAS  Google Scholar 

  37. Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  PubMed  CAS  Google Scholar 

  38. Vogel R, Siebert F (2002) Conformation and stability of alpha-helical membrane proteins. 2. Influence of pH and salts on stability and unfolding of rhodopsin. Biochemistry 41:3536–3545

    Article  PubMed  CAS  Google Scholar 

  39. Brown MF (1997) Influence of non-lamellar forming lipids on rhodopsin. Curr Top Membr 44:285–356

    Article  CAS  Google Scholar 

  40. Lewis JW, Martínez-Mayorga K, Szundi I, Kliger DS, Brown MF (2010) Protonation switches in GPCR activation: physiologically significant rhodopsin photointermediates. Biophys J 98:288a

    Article  Google Scholar 

  41. Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    Article  PubMed  CAS  Google Scholar 

  42. Marsh D (1996) Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys J 70:2248–2255

    Article  PubMed  CAS  Google Scholar 

  43. Gruner SM (1989) Stability of lyotropic phases with curved interfaces. J Phys Chem 93:7562–7570

    Article  CAS  Google Scholar 

  44. Seddon JM (1990) Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031:1–69

    Article  PubMed  CAS  Google Scholar 

  45. Keller SL, Bezrukov SM, Gruner SM, Tate MW, Vodyanoy I, Parsegian VA (1993) Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys J 65:23–27

    Article  PubMed  CAS  Google Scholar 

  46. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to A. V. Botelho, J. J. Kinnun, J. W. Lewis, K. Martínez-Mayorga, B. Mertz, A. V. Struts, and R. Vogel for discussions. Research in the laboratory of the author is supported by the U.S. National Institutes of Health and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brown, M.F. (2012). UV–Visible and Infrared Methods for Investigating Lipid–Rhodopsin Membrane Interactions. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics