Skip to main content

Studying Substrate Binding to Reconstituted Secondary Transporters by Attenuated Total Reflection Infrared Difference Spectroscopy

  • Protocol
  • First Online:
Book cover Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

The determination of protein conformational changes induced by the interaction of substrates with secondary transporters is an important step toward the elucidation of their transport mechanism. Since conformational changes in a protein alter its vibrational patterns, they can be detected with high sensitivity by infrared difference (IRdiff) spectroscopy without the need for external probes. We describe a general procedure to obtain substrate-induced IRdiff spectra by alternating perfusion of buffers over an attenuated total reflection (ATR) crystal containing an adhered film of a membrane protein reconstituted in lipids. As an example, we provide specific protocols to obtain melibiose and Na+-induced ATR-IRdiff spectra of reconstituted melibiose permease, a sodium/melibiose co-transporter from E. coli. The presented methodology is applicable in principle to any membrane protein, provided that it can be purified and reconstituted in functional form, and appropriate substrates are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shenker A (1995) G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillieres Clin Endocrinol Metab 9:427–451

    Article  PubMed  CAS  Google Scholar 

  2. Abramson J, Wright EM (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432

    Article  PubMed  CAS  Google Scholar 

  3. Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261:32–43

    Article  PubMed  CAS  Google Scholar 

  4. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  PubMed  CAS  Google Scholar 

  5. Hovius R, Vallotton P, Wohland T, Vogel H (2000) Fluorescence techniques: shedding light on ligand-receptor interactions. Trends Pharmacol Sci 21:266–273

    Article  PubMed  CAS  Google Scholar 

  6. Cooper MA (2004) Advances in membrane receptor screening and analysis. J Mol Recognit 17:286–315

    Article  PubMed  CAS  Google Scholar 

  7. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Quart Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  8. Jung C (2000) Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 13:325–351

    Article  PubMed  CAS  Google Scholar 

  9. Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170

    Article  PubMed  CAS  Google Scholar 

  10. Nyquist RM, Ataka K, Heberle J (2004) The molecular mechanism of membrane proteins probed by evanescent infrared waves. Chembiochem 5:431–436

    Article  PubMed  CAS  Google Scholar 

  11. Zscherp C, Barth A (2001) Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. Biochemistry 40:1875–1883

    Article  PubMed  CAS  Google Scholar 

  12. Rich PR, Iwaki M (2007) Methods to probe protein transitions with ATR infrared spectroscopy. Mol Biosyst 3:398–407

    Article  PubMed  CAS  Google Scholar 

  13. Baenziger JE, Miller KW, Rothschild KJ (1992) Incorporation of the nicotinic acetylcholine receptor into planar multilamellar films: characterization by fluorescence and Fourier transform infrared difference spectroscopy. Biophys J 61:983–992

    Article  PubMed  CAS  Google Scholar 

  14. Baenziger JE, Miller KW, Rothschild KJ (1993) Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. Biochemistry 32:5448–5454

    Article  PubMed  CAS  Google Scholar 

  15. León X, Lórenz-Fonfría VA, Lemonnier R, Leblanc G, Padrós E (2005) Substrate-induced conformational changes of melibiose permease from Escherichia coli studied by infrared difference spectroscopy. Biochemistry 44:3506–3514

    Article  PubMed  Google Scholar 

  16. Iwaki M, Andrianambinintsoa S, Rich P, Breton J (2002) Attenuated total reflection Fourier transform infrared spectroscopy of redox transitions in photosynthetic reaction centers: comparison of perfusion- and light-induced difference spectra. Spectrochim Acta A 58:1523–1533

    Article  Google Scholar 

  17. Nyquist RM, Heitbrink D, Bolwien C, Gennis RB, Heberle J (2003) Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase. Proc Natl Acad Sci U S A 100:8715–8720

    Article  PubMed  CAS  Google Scholar 

  18. León X, Lemonnier R, Leblanc G, Padrós E (2006) Changes in secondary structures and acidic side chains of melibiose permease upon cosubstrates binding. Biophys J 91:4440–4449

    Article  PubMed  Google Scholar 

  19. León X, Leblanc G, Padrós E (2009) Alteration of sugar-induced conformational changes of the melibiose permease by mutating Arg141 in loop 4-5. Biophys J 96:4877–4886

    Article  PubMed  Google Scholar 

  20. Lórenz-Fonfría VA, Granell M, León X, Leblanc G, Padrós E (2009) In-plane and out-of-plane infrared difference spectroscopy unravels tilting of helices and structural changes in a membrane protein upon substrate binding. J Am Chem Soc 131:15094–15095

    Article  PubMed  Google Scholar 

  21. Granell M, León X, Leblanc G, Padrós E, Lórenz-Fonfría V (2010) Structural insights into the activation mechanism of melibiose permease by sodium binding. Proc Natl Acad Sci U S A 107:22078–22083

    Article  PubMed  CAS  Google Scholar 

  22. Saier MH Jr (2000) Families of transmembrane sugar transport proteins. Mol Microbiol 35:699–710

    Article  PubMed  CAS  Google Scholar 

  23. Pourcher T, Bassilana M, Sarkar HK, Kaback HR, Leblanc G (1990) The melibiose/Na  +  symporter of Escherichia coli: kinetic and molecular properties. Philos Trans R Soc Lond B: Biol Sci 326:411–423

    Article  CAS  Google Scholar 

  24. Wilson TH, Ding PZ (2001) Sodium-substrate cotransport in bacteria. Biochim Biophys Acta 1505:121–130

    Article  PubMed  CAS  Google Scholar 

  25. Pourcher T, Leclercq S, Brandolin G, Leblanc G (1995) Melibiose permease of Escherichia coli: large scale purification and evidence that H+, Na+, and Li+ sugar symport is catalyzed by a single polypeptide. Biochemistry 34:4412–4420

    Article  PubMed  CAS  Google Scholar 

  26. Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1422:105–185

    Article  PubMed  CAS  Google Scholar 

  27. Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19:357–369

    Article  PubMed  CAS  Google Scholar 

  28. Fringeli UP (2000) ATR and reflectance IR spectroscopy, applications. In: Lindon JC, Tranter GE, Holmes JL (eds) Encyclopedia of spectroscopy and spectrometry. Academic Press. pp 58–75

    Google Scholar 

  29. Marsh D (1999) Quantification of secondary structure in ATR infrared spectroscopy. Biophys J 77:2630–2637

    Article  PubMed  CAS  Google Scholar 

  30. Boulet-Audet M, Buffeteau T, Boudreault S, Daugey N, Pézolet M (2010) Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra. J Phys Chem B 114:8255–8261

    Article  PubMed  CAS  Google Scholar 

  31. Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem 23:405–450

    Article  PubMed  CAS  Google Scholar 

  32. Lórenz-Fonfría VA, Villaverde J, Trézéguet V, Lauquin GJ, Brandolin G, Padrós E (2003) Structural and functional implications of the instability of the ADP/ATP transporter purified from mitochondria as revealed by FTIR spectroscopy. Biophys J 85:255–266

    Article  PubMed  Google Scholar 

  33. Lórenz-Fonfría VA, Villaverde J, Padrós E (2002) Fourier deconvolution in non-self-deconvolving conditions. Effective narrowing, signal-to-noise degradation, and curve fitting. Appl Spectrosc 56:232–242

    Article  Google Scholar 

  34. Lórenz-Fonfría VA, Padrós E (2004) Curve-fitting of Fourier manipulated spectra comprising apodization, smoothing, derivation and deconvolution. Spectrochim Acta A 60:2703–2710

    Article  Google Scholar 

  35. Lórenz-Fonfría VA, Padrós E (2004) Curve-fitting overlapped bands: quantification and improvement of curve-fitting robustness in the presence of errors in the model and in the data. Analyst 129:1243–1250

    Article  PubMed  Google Scholar 

  36. Lórenz VA, Villaverde J, Trézéguet V, Lauquin GJ, Brandolin G, Padrós E (2001) The secondary structure of the inhibited mitochondrial ADP/ATP transporter from yeast analyzed by FTIR spectroscopy. Biochemistry 40:8821–8833

    Article  PubMed  Google Scholar 

  37. Picard F, Buffeteau T, Desbat B, Auger M, Pézolet M (1999) Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy. Biophys J 76:539–551

    Article  PubMed  CAS  Google Scholar 

  38. Buffeteau T, Le Calvez E, Desbat B, Pelletier I, Pezolet M (2001) Quantitative orientation of α-helical polypeptides by attenuated total reflection infrared spectroscopy. J Phys Chem B 105:1464–1471

    Article  CAS  Google Scholar 

  39. Meyer-Lipp K, Séry N, Ganea C, Basquin C, Fendler K, Leblanc G (2006) The inner interhelix loop 4-5 of the melibiose permease from Escherichia coli takes part in conformational changes after sugar binding. J Biol Chem 281:25882–25892

    Article  PubMed  CAS  Google Scholar 

  40. Ryan SE, Demers CN, Chew JP, Baenziger JE (1996) Structural effects of neutral and anionic lipids on the nicotinic acetylcholine receptor. An infrared difference spectroscopy study. J Biol Chem 271:24590–24597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Marie Curie Reintegration Grant PIRG03-6A-2008-231063 (to V.L.-F.), and by Ministerio de Ciencia e Innovación grants BMC2003-04941, BFU2006-04656/BMC, and BFU2009-08758/BMC, the Direcció General de Recerca (DURSI, Generalitat de Catalunya), 1999SGR-0102 grant, and the European Commission Bio4-CT97-2119 grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor A. Lórenz-Fonfría or Esteve Padrós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lórenz-Fonfría, V.A., León, X., Padrós, E. (2012). Studying Substrate Binding to Reconstituted Secondary Transporters by Attenuated Total Reflection Infrared Difference Spectroscopy. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics