Skip to main content

Solution NMR Studies of Integral Polytopic α-Helical Membrane Proteins: The Structure Determination of the Seven-Helix Transmembrane Receptor Sensory Rhodopsin II, pSRII

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

About 30% of the proteins encoded in the genome are expressed as membrane proteins but these represent <1% of all the structures solved today. In view of the physiological and pharmaceutical significance of membrane proteins it is clear that a better and more comprehensive understanding of their three-dimensional (3D) structures at atomic resolution is required. α-Helical integral membrane proteins are generally more difficult to work with than β-barrel-type proteins and this has particularly been true for the polytopic members such as the large family of seven-helical proteins. In this chapter we describe the practical aspects of the solution-state NMR spectroscopy structure determination of the seven-helical transmembrane (7-TM) protein receptor sensory rhodopsin pSRII from the haloalkaliphilic archaeon Natronomonas pharaonis reconstituted in detergent micelles. This is the first time that a three-dimensional structure of a 7-TM protein has been determined by NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    Article  PubMed  CAS  Google Scholar 

  2. Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Quart Rev Biophys 43:65–158

    Article  CAS  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  4. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8:334–338

    Article  PubMed  CAS  Google Scholar 

  5. Fernandez C, Adeishvili K, Wuthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci U S A 98:2358–2363

    Article  PubMed  CAS  Google Scholar 

  6. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CRH, Prive GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99:13560–13565

    Article  PubMed  CAS  Google Scholar 

  7. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    Article  PubMed  CAS  Google Scholar 

  8. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci U S A 102:10870–10875

    Article  PubMed  CAS  Google Scholar 

  9. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:U512–U591

    Article  Google Scholar 

  10. Zhou YP, Cierpicki T, Jimenez RHF, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31:896–908

    Article  PubMed  CAS  Google Scholar 

  11. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian CL, Sonnichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729

    Article  PubMed  Google Scholar 

  12. http://www.drorlist.com/nmr/MPNMR.html

  13. Gautier A, Kirkpatrick JP, Nietlispach D (2008) Solution-state NMR spectroscopy of a seven-helix transmembrane protein receptor: backbone assignment, secondary structure, and dynamics. Angew Chem Int Ed 47:7297–7300

    Article  CAS  Google Scholar 

  14. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–774

    Article  Google Scholar 

  15. Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J (2001) X-ray structure of sensory rhodopsin II at 2.1-angstrom resolution. Proc Natl Acad Sci U S A 98:10131–10136

    Article  PubMed  CAS  Google Scholar 

  16. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503

    Article  PubMed  CAS  Google Scholar 

  17. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    Article  PubMed  CAS  Google Scholar 

  18. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  PubMed  CAS  Google Scholar 

  19. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Struct Funct Bioinform 59:687–696

    Article  CAS  Google Scholar 

  20. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Section D: Biol Crystallogr 54:905–921

    Article  CAS  Google Scholar 

  21. Linge JP, O’Donoghue SI, Nilges M (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Nucl Magn Reson Biol Macromol Part B 339:71–90

    Article  CAS  Google Scholar 

  22. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  CAS  Google Scholar 

  23. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  24. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  PubMed  CAS  Google Scholar 

  25. Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6:23–28

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  27. Neidhard FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    Google Scholar 

  28. Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  PubMed  CAS  Google Scholar 

  29. Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

    Article  PubMed  CAS  Google Scholar 

  30. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  PubMed  CAS  Google Scholar 

  31. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  PubMed  CAS  Google Scholar 

  32. Hwang TL, Mori S, Shaka AJ, vanZijl PCM (1997) Application of phase-modulated CLEAN chemical EXchange spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOEs. J Am Chem Soc 119:6203–6204

    Article  CAS  Google Scholar 

  33. Schuttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Section D: Biol Crystallogr 60:1355–1363

    Article  Google Scholar 

  34. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Nietlispach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gautier, A., Nietlispach, D. (2012). Solution NMR Studies of Integral Polytopic α-Helical Membrane Proteins: The Structure Determination of the Seven-Helix Transmembrane Receptor Sensory Rhodopsin II, pSRII. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics