Skip to main content

Predicting the Biological Activities Through QSAR Analysis and Docking-Based Scoring

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

Numerous computational methodologies have been developed to facilitate the process of drug discovery. Broadly, they can be classified into ligand-based approaches, which are solely based on the calculation of the molecular properties of compounds, and structure-based approaches, which are based on the study of the interactions between compounds and their target proteins. This chapter deals with two major categories of ligand-based and structure-based methods for the prediction of biological activities of chemical compounds, namely quantitative structure-activity relationship (QSAR) analysis and docking-based scoring. QSAR methods are endowed with robustness and good ranking ability when applied to the prediction of the activity of closely related analogs; however, their great dependence on training sets significantly limits their applicability to the evaluation of diverse compounds. Instead, docking-based scoring, although not very effective in ranking active compounds on the basis of their affinities or potencies, offer the great advantage of not depending on training sets and have proven to be suitable tools for the distinction of active from inactive compounds, thus providing feasible platforms for virtual screening campaigns. Here, we describe the basic principles underlying the prediction of biological activities on the basis of QSAR and docking-based scoring, as well as a method to combine two or more individual predictions into a consensus model. Finally, we describe an example that illustrates the applicability of QSAR and molecular docking to G protein-coupled receptor (GPCR) projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Congreve M, Marshall F (2010) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996

    Article  PubMed  CAS  Google Scholar 

  2. Vilar S, Cozza G, Moro S (2008) Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr Top Med Chem 8:1555–1572

    Article  PubMed  CAS  Google Scholar 

  3. Costanzi S, Tikhonova IG, Harden TK, Jacobson KA (2009) Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands. J Comput Aided Mol Des 23:747–754

    Article  PubMed  CAS  Google Scholar 

  4. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  CAS  Google Scholar 

  5. Vilar S, Karpiak J, Costanzi S (2010) Ligand and structure-based models for the prediction of ligand-receptor affinities and virtual screenings: Development and application to the β2-adrenergic receptor. J Comput Chem 31:707–720

    PubMed  CAS  Google Scholar 

  6. Potemkin V, Grishina M (2008) Principles for 3D/4D QSAR classification of drugs. Drug Discov Today 13:952–959

    Article  PubMed  CAS  Google Scholar 

  7. Estrada E (2008) How the parts organize in the whole? A top-down view of molecular descriptors and properties for QSAR and drug design. Mini Rev Med Chem 8:213–221

    Article  PubMed  CAS  Google Scholar 

  8. Cramer RD, Patterson DE, Bunce JD (1988) Comparative Molecular-Field Analysis (CoMFA).1. Effect of Shape on Binding of Steroids to Carrier Proteins. J Am Chem Soc 110:5959–5967

    Article  PubMed  CAS  Google Scholar 

  9. Klebe G, Abraham U, Mietzner T (1994) Molecular Similarity Indexes in A Comparative-Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological-Activity. J Med Chem 37:4130–4146

    Article  PubMed  CAS  Google Scholar 

  10. Wold S, Albano C, Dunn WJ, Esbensen K, Hellberg S, Johansson E et al (1984) Modeling data tables by principal components and PLS-class patterns and quantitative predictive relations. Analusis 12:477–485

    CAS  Google Scholar 

  11. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  12. Moro S, Bacilieri M, Ferrari C, Spalluto G (2005) Autocorrelation of molecular electrostatic potential surface properties combined with partial least squares analysis as alternative attractive tool to generate ligand-based 3D-QSARs. Curr Drug Discov Technol 2:13–21

    Article  PubMed  CAS  Google Scholar 

  13. Moro S, Bacilieri M, Cacciari B, Spalluto G (2005) Autocorrelation of molecular electrostatic potential surface properties combined with partial least squares analysis as new strategy for the prediction of the activity of human A3 adenosine receptor antagonists. J Med Chem 48:5698–5704

    Article  PubMed  CAS  Google Scholar 

  14. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243

    Article  PubMed  CAS  Google Scholar 

  15. Benedetti P, Mannhold R, Cruciani G, Ottaviani G (2004) GRIND/ALMOND investigations on CysLT1 receptor antagonists of the quinolinyl(bridged)aryl type. Bioorg Med Chem 12:3607–3617

    Article  PubMed  CAS  Google Scholar 

  16. Costanzi S, Siegel J, Tikhonova IG, Jacobson KA (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptor. Curr Pharm Des 15:3994–4002

    Article  PubMed  CAS  Google Scholar 

  17. Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17:8–14

    Article  PubMed  CAS  Google Scholar 

  18. Costanzi S (2008) On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. J Med Chem 51:2907–2914

    Article  PubMed  CAS  Google Scholar 

  19. Michino M., Abola E., GPCR Dock 2008 participants, Brooks C.L. 3rd, Dixon J.S., Moult J., Stevens R.C. (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat. Rev. Drug Discov. 8, 455-463

    Google Scholar 

  20. Costanzi S (2010) Modeling G protein-coupled receptors: a concrete possibility. Chimica Oggi-Chemistry Today 28:26–31

    CAS  Google Scholar 

  21. Chipot C, Rozanska X, Dixit SB (2005) Can free energy calculations be fast and accurate at the same time? Binding of low-affinity, non-peptide inhibitors to the SH2 domain of the src protein. J Comput Aided Mol Des 19:765–770

    Article  PubMed  CAS  Google Scholar 

  22. Foloppe N, Hubbard R (2006) Towards predictive ligand design with free-energy based computational methods? Curr Med Chem 13:3583–3608

    Article  PubMed  CAS  Google Scholar 

  23. Warren GL, Andrews C, Capelli AM, Clarke B, LaLonde J, Lambert MH et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  PubMed  CAS  Google Scholar 

  24. de Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonists of the β2-adrenergic receptor. J Med Chem 51:4978–4985

    Article  PubMed  CAS  Google Scholar 

  25. Reynolds KA, Katritch V, Abagyan R (2009) Identifying conformational changes of the β2-adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J Comput Aided Mol Des 23:273–288

    Article  PubMed  CAS  Google Scholar 

  26. Katritch V, Rueda M, Lam PC, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2A receptor complex. Proteins 78:197–211

    Article  PubMed  CAS  Google Scholar 

  27. Bhattacharya S, Vaidehi N (2010) Computational mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor. J Am Chem Soc 132:5205–5214

    Article  PubMed  CAS  Google Scholar 

  28. Vilar S, Ferino G, Sharangdhar SP, Berk B, Cavasotto CN, Costanzi S (2010) Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models. Submitted for publication.

    Google Scholar 

  29. Topiol S, Sabio M (2008) Use of the X-ray structure of the β2-adrenergic receptor for drug discovery. Bioorg Med Chem Lett 18:1598–1602

    Article  PubMed  CAS  Google Scholar 

  30. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of β2-adrenergic receptor ligands. Proc Natl Acad Sci USA 106:6843–6848

    Article  PubMed  CAS  Google Scholar 

  31. Carlsson J, Yoo L, Gao ZG, Irwin JJ, Shoichet BK, Jacobson KA (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53:3748–3755

    Article  PubMed  CAS  Google Scholar 

  32. Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, Yeager M et al (2010) Structure-based ­discovery of novel chemotypes for adenosine A2A receptor antagonists. J Med Chem 53:1799–1809

    Article  PubMed  CAS  Google Scholar 

  33. Vaidehi N, Schlyer S, Trabanino RJ, Floriano WB, Abrol R, Sharma S et al (2006) Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J Biol Chem 281:27613–27620

    Article  PubMed  CAS  Google Scholar 

  34. Engel S, Skoumbourdis AP, Childress J, Neumann S, Deschamps JR, Thomas CJ et al (2008) A virtual screen for diverse ligands: Discovery of selective G protein-coupled receptor antagonists. J Am Chem Soc 130:5115–5123

    Article  PubMed  CAS  Google Scholar 

  35. Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S et al (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem 51:625–633

    Article  PubMed  CAS  Google Scholar 

  36. Cavasotto CN, Orry AJ, Murgolo NJ, Czarniecki MF, Kocsi SA et al (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem 51:581–588

    Article  PubMed  CAS  Google Scholar 

  37. Bhattacharya S, Subramanian G, Hall S, Lin J, Laoui A, Vaidehi N (2010) Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1. J Comput Aided Mol Des 24:659–674

    Article  PubMed  CAS  Google Scholar 

  38. Dragon, Talete, SRL, www.talete.mi.it; E-Dragon, Virtual Computational Chemistry Laboratory, www.vcclab.org.

  39. The CODESSA PRO project, www.codessa-pro.com.

  40. MOE, Chemical Computing Group, Inc., www.chemcomp.com.

  41. Schrödinger, LLC, www.schrodinger.com.

  42. ICM, MolSoft, LLC, www.molsoft.com.

  43. SYBYL, Tripos, Inc., www.tripos.com.

  44. GOLD, Cambridge Crystallographic Data Centre, www.ccdc.cam.ac.uk/products/life_sciences/gold.

  45. The R project for statistical computing, www.r-project.org.

  46. STATISTICA, StatSoft, Inc., www.statsoft.com.

  47. Okuno Y, Tamon A, Yabuuchi H, Niijima S, Minowa Y, Tonomura K et al (2008) GLIDA: GPCR–ligand database for chemical genomics drug discovery–database and tools update. Nucleic Acids Res 36:D907–D912

    Article  PubMed  CAS  Google Scholar 

  48. Costanzi S, Tikhonova IG, Ohno M, Roh EJ, Joshi BV, Colson AO et al (2007) P2Y1 antagonists: Combining receptor-based modeling and QSAR for a quantitative prediction of the biological activity based on consensus scoring. J Med Chem 50:3229–3241

    Article  PubMed  CAS  Google Scholar 

  49. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  PubMed  CAS  Google Scholar 

  50. Normolle D, Ruffin MT, Brenner D (2005) Design of early validation trials of biomarkers. Cancer Inform 1:25–31

    PubMed  Google Scholar 

  51. Concato J, Peduzzi P, Holford TR, Feinstein AR (1995) Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. J Clin Epidemiol 48:1495–1501

    Article  PubMed  CAS  Google Scholar 

  52. Hill T, Lewicki P (2006) In STATISTICS methods and applications. StatSoft, Tulsa, OK

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Program of the NIH, NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Costanzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vilar, S., Costanzi, S. (2012). Predicting the Biological Activities Through QSAR Analysis and Docking-Based Scoring. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics