Skip to main content

LITiCon: A Discrete Conformational Sampling Computational Method for Mapping Various Functionally Selective Conformational States of Transmembrane Helical Proteins

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

G-Protein-coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell signaling thereby controlling many important physiological and pathological functions. GPCRs get activated upon ligand binding and trigger the signal transduction process. GPCRs exist in multiple inactive and active conformations, and there is a finite population of the active and inactive states even in the ligand-free condition. An understanding of the nature of the conformational ensemble sampled by GPCRs and the atomic level mechanism of the conformational transitions require a combination of computational methods and experimental techniques. We have developed a coarse grained discrete conformational sampling computational method called “LITiCon” to map the conformational ensemble sampled by GPCRs in the presence and absence of ligands. The LITiCon method can also be used to predict functional selective conformational states starting from the inactive state of the receptor.

LITiCon has been applied to map the conformational ensemble of β2-adrenergic receptor, a class A GPCR. We have shown that β2-adrenergic receptor samples a larger conformational space in the ligand-free state and that different ligands select and stabilize conformations from this ensemble. In this review we describe the LITiCon method in detail and elucidate the uses and pitfalls of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kenakin TP (2007) Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 28:407–415

    Article  PubMed  CAS  Google Scholar 

  2. Mailman RB, Murthy V (2010) Ligand functional selectivity advances our understanding of drug mechanisms and drug discovery. Neuropsychopharmacology 35:345–346

    Article  PubMed  Google Scholar 

  3. Vaidehi N, Kenakin T (2010) Conformational ensembles of seven transmembrane receptors and their relevance to functional selectivity. Curr Opin Pharmacol 10:775–781

    Article  PubMed  CAS  Google Scholar 

  4. Niesen MJM, Bhattacharya S, Vaidehi N (2011) The role of conformational ensembles in ligand recognition in G-protein coupled receptors. J Am Chem Soc 133:13197–13204

    Google Scholar 

  5. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS et al (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180

    Article  PubMed  CAS  Google Scholar 

  6. Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG et al (2011) The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469:241–244

    Article  PubMed  CAS  Google Scholar 

  7. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z, Cherezov V, Stevens RC (2011) Structure of an agonist bound human A2A adenosine receptor. Science 332:322–327

    Article  PubMed  CAS  Google Scholar 

  8. Landes CF, Ramabhadran A, Taylor JN, Salatan F, Jayaraman V (2011) Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nat Chem Biol 7:168–173

    Article  PubMed  CAS  Google Scholar 

  9. Balaraman G, Bhattacharya S, Vaidehi N (2010) Structural insights into conformational stability of wild type and mutant β1-adrenergic receptor. Biophys J 99:568–577

    Article  PubMed  CAS  Google Scholar 

  10. Bhattacharya S, Subramanian G, Hall S, Lin J, Laoui A, Vaidehi N (2010) Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1. J Comput Aided Mol Des 8:659–674

    Article  Google Scholar 

  11. Bhattacharya S, Vaidehi N (2010) Computa­tional mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor. J Am Chem Soc 132:5205–5214

    Article  PubMed  CAS  Google Scholar 

  12. Bhattacharya S, Hall SE, Vaidehi N (2008) Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. J Mol Biol 382:539–555

    Article  PubMed  CAS  Google Scholar 

  13. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand-stabilized conformational states of human β2 adrenergic receptor: insight into G-protein-coupled receptor activation. Biophys J 94:2027–2042

    Article  PubMed  CAS  Google Scholar 

  14. Lam AR, Bhattacharya S, Patel K, Hall SE, Mao A, Vaidehi N (2011) Importance of receptor flexibility in binding of cyclam compounds to the chemokine receptor CXCR4. J Chem Inf Model 51:139–147

    Article  PubMed  CAS  Google Scholar 

  15. Vaidehi N (2010) Dynamics and flexibility of G-protein coupled receptor conformations and its relevance to drug design. Drug Discov Today 15:951–957

    Article  PubMed  CAS  Google Scholar 

  16. Kikkawa H, Kurose H, Isogaya M, Sato Y, Nagao T (1997) Differential contribution of two serine residues of wild type and constitutively active β2-adrenoceptors to the interaction with β2-selective agonists. Br J Pharmacol 121:1059–1064

    Article  PubMed  CAS  Google Scholar 

  17. Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK (2004) Sequential binding of agonists to the β2 adrenoceptor: kinetic evidence for intermediate conformational states. J Biol Chem 279:686–691

    Article  PubMed  CAS  Google Scholar 

  18. Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka BK (2005) Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 280:22165–22171

    Article  PubMed  CAS  Google Scholar 

  19. Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein side-chain prediction. Prot Sci 12:2001–2014

    Article  CAS  Google Scholar 

  20. Zamanakos G (2001) A fast and accurate analytical method for the computation of solvent effects in molecular simulations. Ph. D. thesis. Caltech, Pasadena

    Google Scholar 

  21. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Vaidehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bhattacharya, S., Vaidehi, N. (2012). LITiCon: A Discrete Conformational Sampling Computational Method for Mapping Various Functionally Selective Conformational States of Transmembrane Helical Proteins. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics