Skip to main content

Crystallization of Membrane Proteins in Bicelles

  • Protocol
  • First Online:
Membrane Protein Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 914))

Abstract

The structural biology of membrane proteins remains a challenging field, partly due to the difficulty in obtaining high-quality crystals. We developed the bicelle method as a tool to aid with the production of membrane protein crystals. Bicelles are bilayer discs that are formed by a mixture of a detergent and a lipid. They combine the ease of use of detergents with the benefits of a lipidic medium. Bicelles maintain membrane proteins in a bilayer milieu, which is more similar to their native environment than detergent micelles. At the same time, bicelles are liquid at certain temperatures and they can be integrated into standard crystallization techniques without the need for specialized equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586

    Article  PubMed  CAS  Google Scholar 

  2. Ostermeier C, Iwata S, Ludwig B, Michel H (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 2:842–846

    Article  PubMed  CAS  Google Scholar 

  3. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  4. Prive GG, Verner GE, Weitzman C, Zen KH, Eisenberg D, Kaback HR (1994) Fusion proteins as tools for crystallization: the lactose permease from Escherichia coli. Acta Crystallogr D: Biol Crystallogr 50:375–379

    Article  CAS  Google Scholar 

  5. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535

    Article  PubMed  CAS  Google Scholar 

  6. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234

    Article  PubMed  CAS  Google Scholar 

  7. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6

    Article  PubMed  CAS  Google Scholar 

  8. Faham S, Boulting GL, Massey EA, Yohannan S, Yang D, Bowie JU (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14:836–840

    Article  PubMed  CAS  Google Scholar 

  9. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  10. Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747

    Article  PubMed  CAS  Google Scholar 

  11. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565

    Article  PubMed  CAS  Google Scholar 

  12. Vinothkumar KR (2011) Structure of rhomboid protease in a lipid environment. J Mol Biol 407:232–247

    Article  PubMed  CAS  Google Scholar 

  13. Sanders CR 2nd, Prestegard JH (1990) Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J 58:447–460

    Article  PubMed  CAS  Google Scholar 

  14. Sanders CR 2nd, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905

    Article  PubMed  CAS  Google Scholar 

  15. Harroun TA, Koslowsky M, Nieh MP, de Lannoy CF, Raghunathan VA, Katsaras J (2005) Comprehensive examination of mesophases formed by DMPC and DHPC mixtures. Langmuir 21:5356–5361

    Article  PubMed  CAS  Google Scholar 

  16. van Dam L, Karlsson G, Edwards K (2004) Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochim Biophys Acta 1664:241–256

    Article  PubMed  Google Scholar 

  17. Ottiger M, Bax A (1998) Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J Biomol NMR 12:361–372

    Article  PubMed  CAS  Google Scholar 

  18. van Dam L, Karlsson G, Edwards K (2006) Morphology of magnetically aligning DMPC/DHPC aggregates-perforated sheets, not disks. Langmuir 22:3280–3285

    Article  PubMed  Google Scholar 

  19. Nieh MP, Glinka CJ, Krueger S, Prosser RS, Katsaras J (2002) SANS study on the effect of lanthanide ions and charged lipids on the morphology of phospholipid mixtures. Small-angle neutron scattering. Biophys J 82:2487–2498

    Article  PubMed  CAS  Google Scholar 

  20. Triba MN, Warschawski DE, Devaux PF (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 88:1887–1901

    Article  PubMed  CAS  Google Scholar 

  21. Jiang Y, Wang H, Kindt JT (2010) Atomistic simulations of bicelle mixtures. Biophys J 98:2895–2903

    Article  PubMed  CAS  Google Scholar 

  22. Nieh MP, Raghunathan VA, Pabst G, Harroun T, Nagashima K, Morales H, Katsaras J, Macdonald P (2011) Temperature driven annealing of perforations in bicellar model membranes. Langmuir 27:4838–4847

    Article  PubMed  CAS  Google Scholar 

  23. Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335

    Article  PubMed  CAS  Google Scholar 

  24. Barbosa-Barros L, De la Maza A, Walther P, Estelrich J, Lopez O (2008) Morphological effects of ceramide on DMPC/DHPC bicelles. J Microsc 230:16–26

    Article  PubMed  CAS  Google Scholar 

  25. Arnold A, Labrot T, Oda R, Dufourc EJ (2002) Cation modulation of bicelle size and magnetic alignment as revealed by solid-state NMR and electron microscopy. Biophys J 83:2667–2680

    Article  PubMed  CAS  Google Scholar 

  26. Ostermeier C, Michel H (1997) Crystallization of membrane proteins. Curr Opin Struct Biol 7:697–701

    Article  PubMed  CAS  Google Scholar 

  27. Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51

    Article  PubMed  CAS  Google Scholar 

  28. Faham S, Ujwal R, Abramson J, Bowie JU (2009) Chapter 5 Practical aspects of membrane proteins crystallization in bicelles. In: Larry D (ed) Current topics in membranes, vol 63. Academic, San Diego, CA, p 109

    Google Scholar 

  29. Koszelak-Rosenblum M, Krol A, Mozumdar N, Wunsch K, Ferin A, Cook E, Veatch CK, Nagel R, Luft JR, Detitta GT, Malkowski MG (2009) Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins. Protein Sci 18:1828–1839

    Article  PubMed  CAS  Google Scholar 

  30. Cherezov V, Fersi H, Caffrey M (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J 81:225–242

    Article  PubMed  CAS  Google Scholar 

  31. Nollert P, Qiu H, Caffrey M, Rosenbusch JP, Landau EM (2001) Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett 504:179–186

    Article  PubMed  CAS  Google Scholar 

  32. Wadsten P, Wohri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engstrom S (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364:44–53

    Article  PubMed  CAS  Google Scholar 

  33. Judge RA, Swift K, Gonzalez C (2005) An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallogr D: Biol Crystallogr 61:60–66

    Article  Google Scholar 

  34. Hianik T, Haburcak M, Lohner K, Prenner E, Paltauf F, Hermetter A (1998) Compressibility and density of lipid bilayers composed of polyunsaturated phospholipids and cholesterol. Colloids Surf 139:189–197

    Article  CAS  Google Scholar 

  35. De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2:2332–2338

    Article  PubMed  Google Scholar 

  36. Matsumori N, Murata M (2010) 3D structures of membrane-associated small molecules as determined in isotropic bicelles. Nat Prod Rep 27:1480–1492

    Article  PubMed  CAS  Google Scholar 

  37. Lind J, Nordin J, Maler L (2008) Lipid dynamics in fast-tumbling bicelles with varying bilayer thickness: effect of model transmembrane peptides. Biochim Biophys Acta 1778:2526–2534

    Article  PubMed  CAS  Google Scholar 

  38. McKibbin C, Farmer NA, Edwards PC, Villa C, Booth PJ (2009) Urea unfolding of opsin in phospholipid bicelles. Photochem Photobiol 85:494–500

    Article  PubMed  CAS  Google Scholar 

  39. Losonczi JA, Prestegard JH (1998) Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. J Biomol NMR 12:447–451

    Article  PubMed  CAS  Google Scholar 

  40. Fleming K, Matthews S (2004) Media for studies of partially aligned states. Methods Mol Biol 278:79–88

    PubMed  CAS  Google Scholar 

  41. Ghimire H, Inbaraj JJ, Lorigan GA (2009) A comparative study of the effect of cholesterol on bicelle model membranes using X-band and Q-band EPR spectroscopy. Chem Phys Lipids 160:98–104

    Article  PubMed  CAS  Google Scholar 

  42. Shapiro RA, Brindley AJ, Martin RW (2010) Thermal stabilization of DMPC/DHPC bicelles by addition of cholesterol sulfate. J Am Chem Soc 132:11406–11407

    Article  PubMed  CAS  Google Scholar 

  43. Ottiger M, Bax A (1999) Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. J Biomol NMR 13:187–191

    Article  PubMed  CAS  Google Scholar 

  44. Aussenac F, Lavigne B, Dufourc EJ (2005) Toward bicelle stability with ether-linked phospholipids: temperature, composition, and hydration diagrams by 2H and 31P solid-state NMR. Langmuir 21:7129–7135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professors Jochen Zimmer and Michael Wiener for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Faham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Agah, S., Faham, S. (2012). Crystallization of Membrane Proteins in Bicelles. In: Vaidehi, N., Klein-Seetharaman, J. (eds) Membrane Protein Structure and Dynamics. Methods in Molecular Biology, vol 914. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-023-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-023-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-022-9

  • Online ISBN: 978-1-62703-023-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics