Skip to main content

Polarizable Force Fields

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

This chapter provides an overview of the most common methods for including an explicit description of electronic polarization in molecular mechanics force fields: the induced point dipole, shell, and fluctuating charge models. The importance of including polarization effects in biomolecular simulations is discussed, and some of the most important achievements in the development of polarizable biomolecular force fields to date are highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Halgren, T. A., and Damm, W. (2001) Polarizable force fields. Curr. Opin. Struct. Biol. 11, 236–242

    Article  PubMed  CAS  Google Scholar 

  2. Rick, S. W., and Stuart, S. J. (2002) Potentials and algorithms forincorporating polarizability in computer simulations. Rev. Comp. Chem. 18, 89–146

    CAS  Google Scholar 

  3. Ponder, J. W., and Case, D. A. (2003) Force fields for proteinsimulations. Adv. Protein. Chem. 66, 27–85

    Article  PubMed  CAS  Google Scholar 

  4. Yu, H., and van Gunsteren, W. F. (2005) Accounting for polarization inmolecular simulation. Comput. Phys. Commun. 172, 69–85

    Article  CAS  Google Scholar 

  5. Friesner, R. A. (2006) Modeling polarization in proteins and proteinligandcomplexes: methods and preliminary results. Adv. Protein. Chem. 72, 79–104

    Article  CAS  Google Scholar 

  6. Cieplak, P., Dupradeau, F., Duan, Y., and Wang, J. (2009) Polarizationeffects in molecular mechanical force fields. J. Phys.: Condens. Matter 21, 333102

    Article  Google Scholar 

  7. Lopes, P. E. M., Roux, B., and MacKerell, Jr., A. D. (2009) Molecularmodeling and dynamics studies with explicit inclusion of electronicpolarizability: Theory and applications. Theor. Chem. Acc. 124, 11–28

    Article  PubMed  CAS  Google Scholar 

  8. Illingworth, C. J., and Domene, C. (2009) Many-body effects andsimulations of potassium channels. Proc. Roy. Soc. A 465, 1701–1716

    Article  CAS  Google Scholar 

  9. Warshel, A., and Levitt, M. (1976) Theoretical studies of enzymicreactions: Dielectric, electrostatic and steric stabilization of thecarbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249

    Article  PubMed  CAS  Google Scholar 

  10. Warshel, A. (1979) Calculations of chemical processes in solutions. J. Phys. Chem. 83, 1640–1650.

    Article  CAS  Google Scholar 

  11. Stern, H. A., Kaminski, G. A., Banks, J. L., Zhou, R., Berne, B. J.,and Friesner, R. A. (1999) Fluctuating charge, polarizable dipole, and combined models: parametrization from ab initio quantum chemistry. J. Phys. Chem. B 103, 4730–4737

    Article  CAS  Google Scholar 

  12. Kaminsky, J., and Jensen, F. (2007) Force field modeling of amino acidconformational energies. J. Chem. Theor Comput. 3, 1774–1788

    Article  CAS  Google Scholar 

  13. Rasmussen, T. D., Ren, P., Ponder, J. W., and Jensen, F. (2007)Force field modeling of conformational energies: importance of multipole moments and intramolecular polarization. Int. J. Quantum. Chem. 107, 1390–1395

    Article  CAS  Google Scholar 

  14. Geerke, D. P., and van Gunsteren, W. F. (2007) Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. J. Phys. Chem. B 111, 6425–6436

    Article  PubMed  CAS  Google Scholar 

  15. Jorgensen, W. L., McDonald, N. A., Selmi, M., and Rablen, P. R. (1995) Importance of polarization for dipolar solutes in low-dielectric media: 1,2-dichloroethane and water in cyclohexane. J. Am. Chem. Soc. 117, 11809–11810

    Article  CAS  Google Scholar 

  16. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987) The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271

    Article  CAS  Google Scholar 

  17. Stern, H. A., and Feller, S. E. (2003)Stern HA, Feller SE (2003) Calculation of the dielectric permittivity profile for a nonuniform system: application to a lipid bilayer simulation. J. Chem. Phys. 118, 3401–3412

    Article  CAS  Google Scholar 

  18. Davis, J. E., Rahaman, O., and Patel, S. (2009) Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. Biophys. J. 96, 385–402

    Article  PubMed  CAS  Google Scholar 

  19. Davis, J. E., and Patel, S. (2009) Charge equilibration force fields for lipid environments: applications to fully hydrated DPPC bilayers and DMPC-embedded Gramicidin A. J. Phys. Chem. B 113, 9183–9196

    Article  PubMed  CAS  Google Scholar 

  20. Harder, E., MacKerell, Jr., A. D., and Roux, B. (2009) Many-body polarization effects and the membrane dipole potential. J. Am. Chem. Soc. 131, 2760–2761

    Article  PubMed  CAS  Google Scholar 

  21. Gresh, N., Guo, H., Salahub, D. R., Roques, B. P., and Kafafi, S. A.(1999) Critical role of anisotropy for the dimerization energies of two protein-protein recognition motifs: cis-N-methylacetamide versus a β-sheet conformer of alanine dipeptide. A joint ab initio, density functional theory, and molecular mechanics investigation. J. Am. Chem. Soc. 121, 7885–7894

    Article  CAS  Google Scholar 

  22. Tong, Y., Ji, C. G., Mei, Y., and Zhang, J. Z. H. (2003) Simulation of NMR data reveals that proteins’ local structures are stabilized by electronic polarization. J. Am. Chem. Soc. 131, 8636–8641

    Article  Google Scholar 

  23. Caldwell, J. W., and Kollman, P. A. (1995) Cation-π interactions: Nonadditive effects are critical in their accurate representation. J. Am. Chem. Soc. 117, 4177–4178

    Article  CAS  Google Scholar 

  24. Jiao, D., Golubkov, P. A., Darden, T. A., and Ren, P. (2008) Calculation of protein-ligand binding free energy by using a polarizable potential. Proc. Natl. Acad. Sci. USA 105, 6290–6295

    Article  PubMed  CAS  Google Scholar 

  25. Babin, V., Baucom, J., Darden, T. A., and Sagui, C. (2006) Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure. J. Phys. Chem. B 110, 11571–11581

    Article  PubMed  CAS  Google Scholar 

  26. Rick, S. W., Stuart, S. J., and Berne, B. J. (1994) Dynamical fluctuating charge force fields: application to liquid water. J. Chem. Phys. 101, 6141–6156

    Article  CAS  Google Scholar 

  27. Ren, P., and Ponder, J. W. (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107, 5933–5947

    Article  CAS  Google Scholar 

  28. Yu, H., and van Gunsteren, W. F. (2004) Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J. Chem. Phys. 121, 9549–9564

    Article  PubMed  CAS  Google Scholar 

  29. Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., and MacKerellJr., A. D. (2006) A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 418, 245–249

    Article  CAS  Google Scholar 

  30. Bauer, B. A., and Patel, S. (2009) Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. J. Chem. Phys. 131, 084709

    Article  PubMed  Google Scholar 

  31. Kunz, A.-P. E., and van Gunsteren, W. F. (2009) Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. J. Phys. Chem. A 113, 11570–11579

    Article  PubMed  CAS  Google Scholar 

  32. Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera, J. D.,Schnieders, M. J., Haque, I., Mobley, D. L., Lambrecht, D. S., DiStasio,Jr., R. A., Head-Gordon, M., Clark, G. N. I., Johnson, M. E., andHead-Gordon, T. (2010) Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114, 2549–2564

    Google Scholar 

  33. Ren, P., Wu, C., and Ponder, J.W. (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J. Chem. Theor Comput. (in press)

    Google Scholar 

  34. CRC Handbook of Chemistry and Physics, 90th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, USA, 2009.

    Google Scholar 

  35. Applequist, J., Carl, J. R., and Fung, K. K. (1972) Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94, 2952–2960

    CAS  Google Scholar 

  36. Thole, B. T. (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350

    Article  CAS  Google Scholar 

  37. Birge, R. R. (1980) Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion. J. Chem. Phys. 72, 5312–5319

    Article  CAS  Google Scholar 

  38. van Duijnen, P. T., and Swart, M. (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J. Phys. Chem. A 102, 2399–2407

    Article  Google Scholar 

  39. Swart, M., Snijders, J. G., and van Duijnen, P. T. (2004) Polarizabilities of amino acid residues. J. Comp. Meth. Sci. Eng. 4, 419–425

    CAS  Google Scholar 

  40. Wang, J., Cieplak, P., Li, J., Hou, T., Luo, R., and Duan, Y.(2011) Development of polarizable models for molecular mechanical calculations I: Parametrization of atomic polarizability. J. Phys. Chem. B 115, 3091–3099

    Article  PubMed  CAS  Google Scholar 

  41. Wang, J., Cieplak, P., Li, J., Wang, J., Cai, Q., Hsieh, M., Lei, H.,Luo, R., and Duan, Y. (2011) Development of polarizable models for molecular mechanical calculations II: induced dipole models significantly improve accuracy of intermolecular interaction energies. J. Phys. Chem. B 115, 3100–3111

    Article  PubMed  CAS  Google Scholar 

  42. Xie, W., Pu, J., and Gao, J. (2009) A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a polarizable potential function. J. Phys. Chem. A 113, 2109–2116

    Article  PubMed  CAS  Google Scholar 

  43. Nymand, T. M., and Linse, P. (2000) Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. J. Chem. Phys. 112, 6152–6160

    Article  CAS  Google Scholar 

  44. Toukmaji, A., Sagui, C., Board, J., and Darden, T. (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J. Chem. Phys. 113, 10913–10927

    Article  CAS  Google Scholar 

  45. Harder, E., Kim, B., Friesner, R. A., and Berne, B. J. (2005) Efficient simulation method for polarizable protein force fields: application to the simulation of BPTI in liquid water. J. Chem. Theor Comput. 1, 169–180

    Article  Google Scholar 

  46. Wang, W., and Skeel, R. D. (2005) Fast evaluation of polarizable forces. J. Chem. Phys. 123, 164107

    Article  PubMed  Google Scholar 

  47. Lamoureux, G., MacKerell, Jr., A. D., and Roux, B. (2003) A simple polarizable model of water based on classical Drude oscillators. J. Chem. Phys. 119, 5185–5197

    Article  CAS  Google Scholar 

  48. Morita, A., and Kato, S. (1999) An ab initio analysis of medium perturbation on molecular polarizabilities. J. Chem. Phys. 110, 11987–11998

    Article  CAS  Google Scholar 

  49. Schropp, B., and Tavan, P. (2008) The polarizability of point-polarizable water models: density functional theory/molecular mechanics results. J. Phys. Chem. B 112, 6233–6240

    Article  PubMed  CAS  Google Scholar 

  50. Yu, H., Whitfield, T. W., Harder, E., Lamoureux, G., Vorobyov, I.,Anisimov, V. M., MacKerell, Jr., A. D., and Roux, B. (2010) Simulating monovalent and divalent ions in aqueous solution using a Drude polarizable force field. J. Chem. Theor Comput. 6, 774–786

    Article  CAS  Google Scholar 

  51. Harder, E., Anisimov, V. M., Whitfield, T., MacKerell, Jr., A. D., andRoux, B. (2008) Understanding the dielectric properties of liquid amides from a polarizable force field. J. Phys. Chem. B 112, 3509–3521

    Article  PubMed  CAS  Google Scholar 

  52. Anisimov, V. A., Lamoureux, G., Vorobyov, I. V., Huang, N., Roux, B.,and MacKerell, Jr., A. D. (2005) Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J. Chem. Theor Comput. 1, 153–168

    Article  Google Scholar 

  53. Harder, E., Anisimov, V. M., Vorobyov, I. V., Lopes, P. E. M.,Noskov, S. Y., MacKerell, Jr., A. D., and Roux, B. (2006) Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator. J. Chem. Theor Comput. 2, 1587–1597

    Article  CAS  Google Scholar 

  54. Mulliken, R. S. (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793

    Article  CAS  Google Scholar 

  55. Parr, R. G., and Pearson, R. G. (1983) Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516

    Article  CAS  Google Scholar 

  56. Rappe, A. K., and Goddard III, W. A. (1991) Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363

    Article  CAS  Google Scholar 

  57. Chelli, R., Ciabatti, S., Cardini, G., Righini, R., and Procacci, P. (1999) Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method. J. Chem. Phys. 111, 4218–4229

    Article  CAS  Google Scholar 

  58. Banks, J. L., Kaminski, G. A., Zhou, R., Mainz, D. T., Berne, B. J., and Friesner, R. A. (1999) Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J. Chem. Phys. 110, 741–754

    CAS  Google Scholar 

  59. Patel, S., and Brooks III, C. L. (2004) CHARMM fluctuating charge force field for proteins: I Parametrization and application to bulk organic liquid simulations. J. Comput. Chem. 25, 1–15

    Article  PubMed  CAS  Google Scholar 

  60. Nalewajski, R. F., Korchowiec, J., and Zhou, Z. (1988) Molecular hardness and softness parameters and their use in chemistry. Int. J. Quant Chem. Quant Chem. Symp. 22, 349–366

    Article  CAS  Google Scholar 

  61. Chelli, R., Procacci, P., Righini, R., and Califano, S. (1999) Electrical response in chemical potential equalization schemes. J. Chem. Phys. 111, 8569–8575

    Article  CAS  Google Scholar 

  62. Liu, Y. P., Kim, K., Berne, B. J., Friesner, R. A., and Rick, S. W. (1998) Constructing ab initio force fields for molecular dynamics simulations. J. Chem. Phys. 108, 4739–4755

    Article  CAS  Google Scholar 

  63. Cho, A. E., Guallar, V., Berne, B. J., and Friesner, R. (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem. 26, 915–931

    Article  PubMed  CAS  Google Scholar 

  64. Gao, J. (1997) Toward a molecular orbital derived empirical potential for liquid simulations. J. Phys. Chem. B 101, 657–663

    Article  CAS  Google Scholar 

  65. Gao, J. (1998) A molecular-orbital derived polarization potential for liquid water. J. Chem. Phys. 109, 2346–2354

    Article  CAS  Google Scholar 

  66. Xie, W., and Gao, J. Design of a next generation force field: The X-Polpotential. J. Chem. Theor Comput. 2007:,1890–1900

    Article  Google Scholar 

  67. Maple, J. R., Cao, Y., Damm, W., Halgren, T. A., Kaminski, G. A.,Zhang, L. Y., and Friesner, R. A. (2005) A polarizable force field and continuum solvation methodology for modeling of protein-ligand interactions. J. Chem. Theor Comput. 1, 694–715

    Article  CAS  Google Scholar 

  68. Schnieders, M. J., Baker, N. A., Ren, P., and Ponder, J. W. (2007) Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. J. Chem. Phys. 126, 124114

    Article  PubMed  Google Scholar 

  69. Schnieders,M. J., and Ponder, J.W. (2007) Polarizable atomic multipole solutes in a generalized Kirkwood continuum. J. Chem. Theor Comput. 3, 2083–2097

    Article  CAS  Google Scholar 

  70. Tan, T.-H., and Luo, R. (2007) Continuum treatment of electronic polarization effect. J. Chem. Phys. 126, 094103

    Article  PubMed  Google Scholar 

  71. Tan, T.-H., Tan, C., and Luo, R. (2008) Continuum polarizable force field within the Poisson-Boltzmann framework. J. Phys. Chem. B 112, 7675–7688

    Article  PubMed  CAS  Google Scholar 

  72. Cieplak, P., Caldwell, J., and Kollman, P. (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J. Comp. Chem. 22, 1048–1057

    Article  CAS  Google Scholar 

  73. Rick, S. W., and Berne, B. J. (1996) Dynamical fluctuating charge force fields: the aqueous solvation of amides. J. Am. Chem. Soc. 118, 672–679

    Article  CAS  Google Scholar 

  74. Xie, W., Pu, J., MacKerell, Jr., A. D., and Gao, J. (2007) Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J. Chem. Theor Comput. 3, 1878–1889

    Article  CAS  Google Scholar 

  75. Wang, Z.-X., Zhang, W., Wu, C., Lei, H., Cieplak, P., and Duan, Y.(2006) Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. J. Comput. Chem. 27, 781–790. See also the correction in Wang et al. (2006) J. Comput. Chem. 27, 994

    Google Scholar 

  76. Kaminski, G. A., Stern, H. A., Berne, B. J., Friesner, R. A., Cao, Y. X.,Murphy, R. B., Zhou, R., and Halgren, T. A. (2002) Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests. J. Comput. Chem. 23, 1515–1531

    Article  PubMed  CAS  Google Scholar 

  77. Kim, B., Young, T., Harder, E., Friesner, R. A., and Berne, B. J. (2005) Structure and dynamics of the solvation of bovine pancreatic trypsin inhibitor in explicit water: a comparative study of the effects of solvent and protein polarizability. J. Phys. Chem. B 109, 16529–16538

    Article  PubMed  CAS  Google Scholar 

  78. MacDermaid, C. M., and Kaminski, G. A. (2007) Electrostatic polarization is crucial for reproducing pKa shifts of carboxylic residues in turkey ovomucoid third domain. J. Phys. Chem. B 111, 9036–9044

    Article  PubMed  CAS  Google Scholar 

  79. Patel, S., MacKerell, Jr., A. D., and Brooks III, C. L. (2004) CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J. Comput. Chem. 25, 1504–1514

    Article  PubMed  CAS  Google Scholar 

  80. Patel, S., Davis, J. E., and Bauer, B. A. (2009) Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. J. Am. Chem. Soc. 131, 13890–13891

    Article  PubMed  CAS  Google Scholar 

  81. Vorobyov, I., and Allen, T. W. (2010) The electrostatics of solvent and membrane interfaces and the role of electronic polarizability. J. Chem. Phys. 132, 185101

    Article  Google Scholar 

  82. Vorobyov, I., Li, L., and Allen, T. W. (2008) Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane. J. Phys. Chem. B 112, 9588–9602

    Article  PubMed  CAS  Google Scholar 

  83. Vorobyov, I., Li, L., and Allen, T. W. (2008) Electrostatics of deformable lipid membranes. Biophys J 98:2904–2913

    Article  PubMed  CAS  Google Scholar 

  84. Baucom, J., Transue, T., Fuentes-Cabrera, M., Krahn, J. M., Darden,T. A., and Sagui, C. (2004) Molecular dynamics simulations of the d(CCAACGTTGG)2 decamer in crystal environment: comparison of atomic point-charge, extra-point, and polarizable force fields. J. Chem. Phys. 121, 6998–7008

    Article  PubMed  CAS  Google Scholar 

  85. Vladimirov, E., Ivanova, A., and Röosch, N. (2009) Solvent reorganization energies in A-DNA, B-DNA, and rhodamine 6G-DNA complexes from molecular dynamics simulations with a polarizable force field. J. Phys. Chem. B 113, 4425–4434

    Article  PubMed  CAS  Google Scholar 

  86. Baker, C. M., Anisimov, V. M., and MacKerell, Jr., A. D. (2011) Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. J. Phys. Chem. B 115, 580–596

    Article  PubMed  CAS  Google Scholar 

  87. Jiang, W., Hardy, D. J., Phillips, J. C., MacKerell, Jr., A. D.,Schulten, K., and Roux, B. (2011) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J. Phys. Chem. Lett. 2, 87–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jaakko Uusitalo and Praveen Nedumpully for their criticism and suggestions on the manuscript. Financial support from the Academy of Finland is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Antila, H.S., Salonen, E. (2013). Polarizable Force Fields. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics