Skip to main content

Systematic Methods for Structurally Consistent Coarse-Grained Models

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

This chapter provides a primer on theories for coarse-grained (CG) modeling and, in particular, reviews several systematic methods for determining effective potentials for CG models. The chapter first reviews a statistical mechanics framework for relating atomistic and CG models. This framework naturally leads to a quantitative criterion for CG models that are “consistent” with a particular atomistic model for the same system. This consistency criterion is equivalent to minimizing the relative entropy between the two models. This criterion implies that a many-body PMF is the appropriate potential for a CG model that is consistent with a particular atomistic model. This chapter then presents a unified exposition of the theory and numerical methods for several approaches for approximating this many-body PMF. Finally, this chapter closes with a brief discussion of a few of the outstanding challenges facing the field of systematic coarse-graining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MP, Tildesley DP (1987) Computer simulation of liquids. Oxford Press, New York

    Google Scholar 

  2. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, New York

    Google Scholar 

  3. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  4. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  5. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  6. Mervis J (2001) Advanced computing—nsf launches teragrid for academic research. Science 293:1235–1236

    Article  PubMed  CAS  Google Scholar 

  7. Reed DA (2003) Grids, the teragrid, and beyond. Computer 36:62–68

    Article  Google Scholar 

  8. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  9. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comp Phys 117:1–19

    Article  CAS  Google Scholar 

  10. Case DA, Cheatham I. TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods R (2005) The Amber biomolecular simulation programs. J Comp Chem 26: 1668–1688

    Article  CAS  Google Scholar 

  11. Christen M et al (2005) The gromos software for biomolecular simulation: Gromos05. J Comp Chem 26:1719–1751

    Article  CAS  Google Scholar 

  12. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comp 4:435–447

    Article  CAS  Google Scholar 

  13. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–743

    Article  PubMed  CAS  Google Scholar 

  14. Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K (2009) Regulation of the protein-conducting channel by a bound ribosome. Structure 17:1453–1464

    Article  PubMed  CAS  Google Scholar 

  15. Anderson PW (1972) More is different. Science 177:393–396

    Article  PubMed  CAS  Google Scholar 

  16. Boon J-P, Yip S (1992) Molecular hydrodynamics. Dover Publications, New York

    Google Scholar 

  17. Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New York

    Google Scholar 

  18. Clementi C (2008) Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struc Biol 18:10–15

    Article  CAS  Google Scholar 

  19. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  20. Kirkwood JG (1946) The statistical mechanical theory of transport processes.1. general theory. J Chem Phys 14:180–201

    Article  CAS  Google Scholar 

  21. Irving JH, Kirkwood JG (1950) The statistical mechanical theory of transport processes.4. the equations of hydrodynamics. J Chem Phys 18:817–829

    Article  CAS  Google Scholar 

  22. Silbermann J, Klapp S. HL, Shoen M, Channamsetty N, Block H, Gubbins KE (2006) Mesoscale modeling of complex binary fluid mixtures: towards an atomistic foundation of effective potentials. J Chem Phys 124:074105

    Article  CAS  Google Scholar 

  23. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253:694–698

    Article  PubMed  CAS  Google Scholar 

  24. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  25. ten Wolde PR, Chandler D (2002) Drying-induced hydrophobic polymer collapse. Proc Natl Acad Sci USA 99:6539–6543

    Article  PubMed  CAS  Google Scholar 

  26. Everaers R, Sukumaran SK, Grest GS, Svaneborg C, Sivasubramanian A, Kremer K (2004) Rheology and microscopic topology of entangled polymeric liquids. Science 303:823–826

    Article  PubMed  CAS  Google Scholar 

  27. Reynwar BJ, Illya G, Harmandaris VA, Muller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464

    Article  PubMed  CAS  Google Scholar 

  28. Thirumalai D, Klimov DK (1999) Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models. Curr Opin Struc Biol 9:197–207

    Article  CAS  Google Scholar 

  29. Hagler AT, Honig B (1978) On the formation of protein tertiary structure on a computer. Proc Natl Acad Sci USA 75:554–558

    Article  PubMed  CAS  Google Scholar 

  30. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML (2001) A coarse grain model for phospholipid simulation. J Phys Chem B 105:4464–4470

    Article  CAS  Google Scholar 

  31. Nielsen SO, Lopez CF, Srinivas G, Klein ML (2003) A coarse grain model for n-alkanes parameterized from surface tension data. J Chem Phys 119:7043–7049

    Article  CAS  Google Scholar 

  32. Shinoda W, Devane R, Klein ML (2007) Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Sim 33:27–36

    Article  CAS  Google Scholar 

  33. Khurana E, DeVane RH, Kohlmeyer A, Klein ML (2008) Probing peptide nanotube self-assembly at a liquid-liquid interface with coarse-grained molecular dynamics. Nanoletters 8:3626–3630

    Article  CAS  Google Scholar 

  34. DeVane R, Shinoda W, Moore PB, Klein ML (2009) Transferable coarse grain nonbonded interaction model for amino acids. J Chem Theor Comp 5:2115–2124

    Article  CAS  Google Scholar 

  35. DeVane R, Klein ML, Chiu CC, Nielsen SO, Shinoda W, Moore PB (2010) Coarse-grained potential models for phenyl-based molecules: I. parametrization using experimental data. J Phys Chem B 114:6386–6393

    Article  PubMed  CAS  Google Scholar 

  36. Chiu CC, DeVane R, Klein ML, Shinoda W, Moore PB, Nielsen SO (2010) Coarse-grained potential models for phenyl-based molecules: Ii. application to fullerenes. J Phys Chem B 114:6394–6400

    Article  PubMed  CAS  Google Scholar 

  37. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  38. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theor Comp 4:819–834

    Article  CAS  Google Scholar 

  39. Lopez CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hunenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theor Comp 5:3195–3210

    Article  CAS  Google Scholar 

  40. Periole X, Cavalli M, Marrink SJ, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theor Comp 5:2531–2543

    Article  CAS  Google Scholar 

  41. Lee H, de Vries AH, Marrink SJ, Pastor RW (2009) A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J Phys Chem B 113:13186–13194

    Article  PubMed  CAS  Google Scholar 

  42. Partial special issue of J Chem Theor Comp 2(3) May (2006)

    Google Scholar 

  43. (2009) Themed issue on coarse-grained modeling soft condensed matter. Phys Chem Chem Phys 11(12)

    Google Scholar 

  44. (2009) Soft matter themed issue on modeling soft matter. 2(22)

    Google Scholar 

  45. (2010) Faraday discussions on multiscale simulation of soft matter systems. 144

    Google Scholar 

  46. Voth GA (ed) (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press, USA

    Google Scholar 

  47. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struc Biol 17:192–8

    Article  CAS  Google Scholar 

  48. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  49. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892

    Article  PubMed  CAS  Google Scholar 

  50. Kroger M (2004) Simple models for complex nonequilibrium fluids. Phys Rep 390:453–551

    Article  CAS  Google Scholar 

  51. Engquist E.WB, Li XT, Ren WQ, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Comm Comp Phys 2:367–450

    Google Scholar 

  52. Head-Gordon T, Brown S (2003) Minimalist models for protein folding and design. Curr Opin Struc Biol 13:160–167

    Article  CAS  Google Scholar 

  53. Bahar I, Rader A (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struc Biol 15:586–592

    Article  CAS  Google Scholar 

  54. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struc Biol 15:144–150

    Article  CAS  Google Scholar 

  55. Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593–605

    Article  PubMed  CAS  Google Scholar 

  56. Liwo A, Czaplewski C, Oldziej S, Scheraga HA (2008) Computational techniques for efficient conformational sampling of proteins. Curr Opin Struc Biol 18:134–139

    Article  CAS  Google Scholar 

  57. Hills RD, Brooks CL (2009) Insights from coarse-grained go models for protein folding and dynamics. Int J Mol Sci 10:889–905

    Article  PubMed  CAS  Google Scholar 

  58. Kuznetsov IB (2009) Simplified computational methods for the analysis of protein flexibility. Curr Prot Pept Sci 10:607–613

    Article  CAS  Google Scholar 

  59. Eom K, Yoon G, Kim JI, Na S (2010) Coarse-grained elastic models of protein structures for understanding their mechanics and dynamics. J Comp Theor Nanosci 7:1210–1226

    Article  CAS  Google Scholar 

  60. Tozzini V (2010) Multiscale modeling of proteins. Acc Chem Res 43:220–230

    Article  PubMed  CAS  Google Scholar 

  61. Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Ann Rev Biochem 39:23–42

    CAS  Google Scholar 

  62. Scott HL (2002) Modeling the lipid component of membranes. Curr Opin Struc Biol 12:495–502

    Article  CAS  Google Scholar 

  63. Brannigan G, Lin L. C-L, Brown F. LH (2006) Implicit solvent simulation models for biomembranes. Eur Biophys J 35:104–124

    Article  PubMed  CAS  Google Scholar 

  64. Muller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep 434:113–176

    Article  CAS  Google Scholar 

  65. Venturoli M, Sperotto MM, Kranenburg M, Smit B (2006) Mesoscopic models of biological membranes. Phys Rep 437:1–54

    Article  CAS  Google Scholar 

  66. Brown F. LH (2008) Elastic modeling of biomembranes and lipid bilayers. Ann Rev Phys Chem 59:685–712

    Article  CAS  Google Scholar 

  67. Bennun SV, Hoopes MI, Xing CY, Faller R (2009) Coarse-grained modeling of lipids. Chem Phys Lipids 159:59–66

    Article  PubMed  CAS  Google Scholar 

  68. Noguchi H (2009) Membrane simulation models from nanometer to micrometer scale. J Phys Soc Jpn 78:041007

    Article  CAS  Google Scholar 

  69. Pandit SA, Scott HL (2009) Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta-Biomembranes 1788:136–148

    Article  CAS  Google Scholar 

  70. Deserno M (2009) Mesoscopic membrane physics: concepts, simulations, and selected applications. Macromol Rapid Comm 30:752–771

    Article  CAS  Google Scholar 

  71. Glotzer SC, Paul W (2002) Molecular and mesoscale simulation methods for polymer materials. Ann Rev Mat Res 32:401–436

    Article  CAS  Google Scholar 

  72. Paul W, Smith GD (2004) Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory. Rep Prog Phys 67:1117–1185

    Article  CAS  Google Scholar 

  73. Guenza MG (2008) Theoretical models for bridging timescales in polymer dynamics. J Phys: Condens Matter 20:033101–0331024

    Article  CAS  Google Scholar 

  74. Ganesan V, Ellison CJ, Pryamitsyn V (2010) Mean-field models of structure and dispersion of polymer-nanoparticle mixtures. Soft Matter 6:4010–4025

    Article  CAS  Google Scholar 

  75. Buchete NV, Straub JE, Thirumalai D (2004) Development of novel statistical potentials for protein fold recognition. Curr Opin Struc Biol 14:225–32

    Article  CAS  Google Scholar 

  76. Babadi M, Everaers R, Ejtehadi MR (2006) Coarse-grained interaction potentials for anisotropic molecules. J Chem Phys 124:174708

    Article  PubMed  CAS  Google Scholar 

  77. Molinero V, Moore EB (2009) Water modeled as an intermediate element between carbon and silicon. J Phys Chem B 113:4008–4016

    Article  PubMed  CAS  Google Scholar 

  78. Alemani D, Collu F, Cascella M, Dal Peraro M (2010) A nonradial coarse-grained potential for proteins produces naturally stable secondary structure elements. J Chem Theor Comp 6:315–324

    Article  CAS  Google Scholar 

  79. Murtola T, Karttunen M, Vattulainen I (2009) Systematic coarse graining from structure using internal states: application to phospholipid/cholesterol bilayer. J Chem Phys 131:055101

    Article  PubMed  CAS  Google Scholar 

  80. Noid WG, Chu J-W, Ayton GS, Krishna V, Izvekov S, Voth GA, Das A, Andersen HC (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128:244114

    Google Scholar 

  81. Hill TL (1987) An introduction to statistical thermodynamics. Dover reprint, New York

    Google Scholar 

  82. Shi Z, Chen K, Liu Z, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106:1877–1897

    Article  PubMed  CAS  Google Scholar 

  83. Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann Rev Phys Chem 59:545–571

    Article  CAS  Google Scholar 

  84. Ensing B, Nielsen SO, Moore PB, Klein ML, Parrinello M (2007) Energy conservation in adaptive hybrid atomistic/coarse-grain molecular dynamics. J Chem Theor Comp 3:1100–1105

    Article  CAS  Google Scholar 

  85. Hansen J-P, McDonald IR (1990) Theory of simple liquids, 2nd edn. Academic Press, London

    Google Scholar 

  86. Liwo A, Oldziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997) A united-residue force field for off-lattice protein-structure simulations. 1.Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J Comp Chem 18:849–873

    Article  CAS  Google Scholar 

  87. van Kampen, NG (2007) Stochastic processes in Physics and Chemistry, 3rd edn. North-Holland

    Google Scholar 

  88. Zwanzig R (1960) Ensemble method in the theory of irreversibility. J Chem Phys 33:1338–1341

    Article  CAS  Google Scholar 

  89. Mori H (1965) Transport collective motion and brownian motion. Prog Theor Phys 33:423–455

    Article  Google Scholar 

  90. Baschnagel J et al (2000) Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. Adv Poly Sci 152:41–156

    Article  CAS  Google Scholar 

  91. Shell MS (2008) The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys 129:144108

    Article  PubMed  CAS  Google Scholar 

  92. Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers: asymptotic methods and perturbation theory. Springer, Berlin Heidelberg

    Google Scholar 

  93. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  94. Krishna V, Noid WG, Voth GA (2009) The multiscale coarse-graining method. iv. transferring coarse-grained potentials between temperatures. J Chem Phys 131:024103

    Google Scholar 

  95. Chaimovich A, Shell MS (2011) Coarse-graining errors and numerical optimization using a relative entropy framework. J Chem Phys 134:094112

    Article  PubMed  CAS  Google Scholar 

  96. Rudzinski JF, Noid WG (2011) Coarse-graining entropy, forces, and structures. J Chem Phys 135:214101

    Article  PubMed  CAS  Google Scholar 

  97. Larini L, Krishna V (2011) A generalized mean field theory of coarse-graining. J Chem Phys 135:124103

    Article  PubMed  CAS  Google Scholar 

  98. Evans R (1979) Nature of the liquid-vapor interface and other topics in the statistical-mechanics of nonuniform, classical fluids. Adv Phys 28:143–200

    Article  CAS  Google Scholar 

  99. Evans R (1990) Comment on reverse monte carlo simulation. Mol. Sim 4:409–411

    Article  Google Scholar 

  100. Tschop W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. i. coarse-graining procedure for polycarbonates. Acta Poly 49:61–74

    Article  Google Scholar 

  101. Praprotnik M, Junghans C, Delle Site L, Kremer K (2008) Simulation approaches to soft matter: generic statistical properties vs. chemical details. Comp Phys Comm 179:51–60

    Article  CAS  Google Scholar 

  102. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  103. Harmandaris VA, Adhikari NP, van der Vegt N. FA, Kremer K (2006) Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules 39:6708–6719

    Article  CAS  Google Scholar 

  104. Peter C, Delle Site L, Kremer K (2008) Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal.Soft Matter 4:859–869

    Google Scholar 

  105. Hill TL (1987) Statistical mechanics: principles and selected applications. Dover reprint, New York

    Google Scholar 

  106. Noid WG, Chu J-W, Ayton GS, Voth GA (2007) Multiscale coarse-graining and structural correlations: connections to liquid state theory. J Phys Chem B 111:4116–27

    Article  PubMed  CAS  Google Scholar 

  107. Müller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chem Phys Chem 3:754–769

    Article  Google Scholar 

  108. Schommers W (1983) Pair potentials in disordered many-particle systems: a study of liquid gallium. Phys Rev A 28:3599–3605

    Article  CAS  Google Scholar 

  109. Soper AK (1996) Empirical potential monte carlo simulation of fluid structure. Chem Phys 202:295–306

    Article  CAS  Google Scholar 

  110. Reatto L, Levesque D, Weis JJ (1986) Iterative predictor-corrector method for extraction of the pair interaction from structural data for dense classical liquids. Phys Rev A 33:3451–3465

    Article  PubMed  CAS  Google Scholar 

  111. McGreevy RL, Pusztai L (1988) Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Sim 1:359–367

    Article  Google Scholar 

  112. Keen DA, McGreevy RL (1990) Structural modelling of glasses using reverse Monte Carlo simulation. Nature 344:423–425

    Article  CAS  Google Scholar 

  113. Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comp Chem 24:1624–1636

    Article  CAS  Google Scholar 

  114. Milano G, Müller-Plathe F (2005) Mapping atomistic simulations to mesoscopic models: a systematic coarse-graining procedure for vinyl polymer chains. J Phys Chem B 109:18609–18619

    Article  PubMed  CAS  Google Scholar 

  115. Sun Q, Faller R (2006) Crossover from unentangled to entangled dynamics in a systematically coarse-grained polystyrene melt. Macromolecules 39:812–820

    Article  CAS  Google Scholar 

  116. Vettorel T, Meyer H (2006) Coarse graining of short polyethylene chains for studying polymer crystallization. J Chem Theor Comp 2:616–629

    Article  CAS  Google Scholar 

  117. Ghosh J, Faller R (2007) State point dependence of systematically coarse-grained potentials. Mol Sim 33:759–767

    Article  CAS  Google Scholar 

  118. Qian H-J, Carbone P, Chen X, Karimi-Varzaneh HA, Liew CC, Müller-Plathe F (2008) Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene and their mixtures. Macromolecules 41:9919–9929

    Article  CAS  Google Scholar 

  119. Fischer J, Paschek D, Gieger A, Sadowski G (2008) Modeling of aqueous poly(oxyethylene) solutions. 2. Mesoscale simulations. J Phys Chem B 112:13561–13571

    Article  PubMed  CAS  Google Scholar 

  120. Ruhle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theor Comp 5:3211–3223

    Article  CAS  Google Scholar 

  121. Wang H, Junghans C, Kremer K (2009) Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Eur Phys J E 28:221–229

    Article  PubMed  CAS  Google Scholar 

  122. Megariotis G, Vyrkou A, Leygue A, Theodorou DN (2011) Systematic coarse graining of 4-cyano-4-pentylbiphenyl. Ind Eng Chem Res ASAP 50:546

    Google Scholar 

  123. Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comp Chem 24:1624–1636

    Article  CAS  Google Scholar 

  124. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E 52:3730–3737

    Article  CAS  Google Scholar 

  125. Lyubartsev A, Mirzoev A, Chen LJ, Laaksonen A (2010) Systematic coarse-graining of molecular models by the newton inversion method. Faraday Disc 144:43–56

    Article  CAS  Google Scholar 

  126. Murtola T, Falck E, Patra M, Karttunen M, Vattulainen I (2004) Coarse-grained model for phospholipid/cholesterol bilayer. J Chem Phys 121:9156–9165

    Article  PubMed  CAS  Google Scholar 

  127. Lyubartsev AP (2005) Multiscale modeling of lipids and lipid bilayers. Eur Biophys J 35:53–61

    Article  PubMed  CAS  Google Scholar 

  128. Murtola T, Falck E, Karttunen M, Vattulainen I (2007) Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints. J Chem Phys 121:075101

    Article  CAS  Google Scholar 

  129. Lyubartsev AP, Laaksonen A (1997) Osmotic and activity coefficients from effective potentials for hydrated ions. Phys Rev E 55:5689–5696

    Article  CAS  Google Scholar 

  130. Lyubartsev AP, Karttunen M, Vattulainen I, Laaksonen A (2003) On coarse-graining by the inverse Monte Carlo method: dissipative particle dynamics simulations made to a precise tool in soft matter modeling. Soft Matter 1:121–137

    CAS  Google Scholar 

  131. Isihara A (1968) Gibbs-bogoliubov inequality. J Phys A: Math Nucl Gen 1:539–548

    Article  Google Scholar 

  132. Henderson RL (1974) A uniqueness theorem for fluid pair correlation functions. Phys Lett A 49:197–198

    Article  Google Scholar 

  133. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  Google Scholar 

  134. Mermin ND (1965) Thermal properties of inhomogeneous electron gas. Phys Rev A 137:1441–1443

    Google Scholar 

  135. Johnson ME, Head-Gordon T, Louis AA (2007) Representability problems for coarse-grained water potentials. J Chem Phys 126:144509

    Article  PubMed  CAS  Google Scholar 

  136. Chayes JT, Chayes L, Lieb EH (1984) The inverse problem in classical statistical mechanics. Comm Math Phys 93:57–121

    Article  Google Scholar 

  137. Chayes JT, Chayes L (1984) On the validity of the inverse conjecture in classical density functional theory. J Stat Phys 36:471–488

    Article  Google Scholar 

  138. Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of electrolyte solutions: applications to aqueous NaCl and KCl. J Phys Chem B 113:7785–7793

    Article  PubMed  CAS  Google Scholar 

  139. Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of polymer chains: applications to double-stranded DNA. Biophys J 96:4044–4052

    Article  PubMed  CAS  Google Scholar 

  140. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473

    Article  PubMed  CAS  Google Scholar 

  141. Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105

    Article  PubMed  CAS  Google Scholar 

  142. Izvekov S, Chung PW, Rice BM (2010) The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials. J Chem Phys 133:064109

    Article  PubMed  CAS  Google Scholar 

  143. Ercolessi F, Adams JB (1994) Interatomic potentials from first-principles calculations: the force-matching method. Europhys Lett 26:583

    Article  CAS  Google Scholar 

  144. Izvekov S, Parrinello M, Burnham CJ, Voth, GA (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J Chem Phys 120:10896–10913

    Article  PubMed  CAS  Google Scholar 

  145. Wang YT, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193

    Article  PubMed  CAS  Google Scholar 

  146. Wang YT, Izvekov S, Yan TY, Voth GA (2006) Multiscale coarse-graining of ionic liquids. J Phys Chem B 110:3564–3575

    Article  PubMed  CAS  Google Scholar 

  147. Wang YT, Feng SL, Voth GA (2009) Transferable coarse-grained models for ionic liquids. J Chem Theor Comp 5:1091–1098

    Article  CAS  Google Scholar 

  148. Izvekov S, Voth GA (2006) Multiscale coarse-graining of mixed phospholipid/cholesterol bilayers. J Chem Theor Comp 2:637–648

    Article  CAS  Google Scholar 

  149. Izvekov S, Voth GA (2009) Solvent-free lipid bilayer model using multiscale coarse graining. J Phys Chem B 113:4443–4455

    Article  PubMed  CAS  Google Scholar 

  150. Izvekov S, Violi A, Voth GA (2005) Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. J Phys Chem B 109:17019–17024

    Article  PubMed  CAS  Google Scholar 

  151. Liu P, Izvekov S, Voth GA (2007) Multiscale coarse-graining of monosaccharides. J Phys Chem B 111:11566–11575

    Article  PubMed  CAS  Google Scholar 

  152. Wang YT, Voth GA (2010) Molecular dynamics simulations of polyglutamine aggregation using solvent-free multiscale coarse-grained models. J Phys Chem B 114:8735–8743

    Article  PubMed  CAS  Google Scholar 

  153. Hills RD, Lu LY, Voth GA (2010) Multiscale coarse-graining of the protein energy landscape. PLoS Comput Biol 6:e1000827

    Article  PubMed  CAS  Google Scholar 

  154. Chorin AJ, Hald OH, Kupferman R (2000) Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc Natl Acad Sci USA 97:2968–2973

    Article  PubMed  CAS  Google Scholar 

  155. Noid WG, Liu P, Wang YT, Chu, J-W, Ayton, GS, Izvekov S, Andersen HC, Voth GA (2008) The multiscale coarse-graining method. II. Numerical implementation for molecular coarse-grained models. J Chem Phys 128:244115

    Google Scholar 

  156. Mullinax JW, Noid WG (2009) A generalized Yvon-Born-Green theory for molecular systems. Phys Rev Lett 103:198104

    Article  PubMed  CAS  Google Scholar 

  157. Mullinax JW, Noid WG (2010) A generalized Yvon-Born-Green theory for determining coarse-grained interaction potentials. J Phys Chem C 114:5661–5674

    Article  CAS  Google Scholar 

  158. Chorin AJ (2003) Conditional expectations and renormalization. Multiscale Model Simul 1:105–118

    Article  Google Scholar 

  159. Chorin AJ, Hald OH (2006) Stochastic Tools in Mathematics and Science. Springer, New York

    Google Scholar 

  160. Larini L, Lu LY, Voth GA (2010) The multiscale coarse-graining method. vi. implementation of three-body coarse-grained potentials. J Chem Phys 132:164107

    Google Scholar 

  161. Lu L, Voth GA (2009) Systematic coarse-graining of a multicomponent lipid bilayer. J Phys Chem B 113:1501–1510

    Article  PubMed  CAS  Google Scholar 

  162. Mullinax JW, Noid WG (2009) Extended ensemble approach for deriving transferable coarse-grained potentials. J Chem Phys 131:104110

    Article  CAS  Google Scholar 

  163. Lu LY, Izvekov S, Das A, Andersen HC, Voth GA (2010) Efficient, regularized, and scalable algorithms for multiscale coarse-graining. J Chem Theor Comp 6:954–965

    Article  CAS  Google Scholar 

  164. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  165. Demmel JW (1997) Applied Numerical Linear Algebra. SIAM, Philadelhia

    Book  Google Scholar 

  166. Mullinax JW, Noid WG (2010) Reference state for the generalized Yvon-Born-Green theory: application for a coarse-grained model of hydrophobic hydration. J Chem Phys 133:124107

    Article  PubMed  CAS  Google Scholar 

  167. Gubbins KE (1980) Structure of nonuniform molecular fluids—integrodifferential equations for the density-orientation profile. Chem Phys Lett 76:329–332

    Article  CAS  Google Scholar 

  168. Whittington SG, Dunfield LG (1973) A Born-Green-Yvon treatment of polymers with excluded volume. J Phys A: Math Nucl Gen 6:484

    Article  CAS  Google Scholar 

  169. Attard P (1995) Polymer Born-Green-Yvon equation with proper triplet superposition approximation results for hard-sphere chains. J Chem Phys 102:5411

    Article  CAS  Google Scholar 

  170. Taylor MP, Lipson J. EG (1993) A site-site Born-Green-Yvon equation for hard sphere dimers. J Chem Phys 100:518

    Article  Google Scholar 

  171. Taylor MP, Lipson J. EG (1995) A Born-Green-Yvon equation for flexible chain-molecule fluids. I. General formalism and numerical results for short hard-sphere chains. J Chem Phys 102:2118

    Google Scholar 

  172. Taylor MP, Lipson J. EG (1995) A Born–Green–Yvon equation for flexible chain-molecule fluids. I. Applications to hard-sphere polymers. J Chem Phys 102:6272

    Google Scholar 

  173. Katsov K, Weeks JD (2001) On the mean field treatment of attractive interactions in nonuniform simple fluids. J Phys Chem B 105:6738–6744

    Article  CAS  Google Scholar 

  174. Chen YG, Kaur C, Weeks JD (2004) Connecting systems with short and long ranged interactions: local molecular field theory for ionic fluids. J Phys Chem B 108:19874–19884

    Article  CAS  Google Scholar 

  175. Rodgers JM, Kaur C, Chen YG, Weeks JD (2006) Attraction between like-charged walls: short-ranged simulations using local molecular field theory. Phys Rev Lett 97:097801

    Article  PubMed  CAS  Google Scholar 

  176. Mullinax JW, Noid WG (2010) Recovering physical potentials from a model protein databank. Proc Natl Acad Sci USA 107:19867

    Article  PubMed  CAS  Google Scholar 

  177. Cho HM, Chu JW (2009) Inversion of radial distribution functions to pair forces by solving the yvon-born-green equation iteratively. J Chem Phys 131:134107

    Article  PubMed  CAS  Google Scholar 

  178. Wang YT, Noid WG, Liu P, Voth GA (2009) Effective force coarse-graining. Phys Chem Chem Phys 11:2002–2015

    Article  PubMed  CAS  Google Scholar 

  179. Carbone P, Varzaneh H. AK, Chen X, Müller-Plathe F (2008) Transferability of coarse-grained force fields: the polymer case. J Chem Phys 128:064904

    Article  PubMed  CAS  Google Scholar 

  180. Ferrenberg AM, Swendsen RH (1988) New monte carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638

    Article  PubMed  CAS  Google Scholar 

  181. Mognetti BM, Oettel M, Yelash L, Virnau P, Paul W, Binder, K (2008) Spherically averaged versus angle-dependent interactions in quadrupolar fluids. Phys Rev E 77:041506

    Article  CAS  Google Scholar 

  182. Mognetti BM, Virnau P, Yelash L, Paul W, Binder K, Müller M, MacDowell LG (2009) Coarse-grained models for fluids and their mixtures: comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. J Chem Phys 130:044101

    Article  PubMed  CAS  Google Scholar 

  183. Allen EC, Rutledge GC (2008) A novel algorithm for creating coarse-grained, density dependent implicit solvent models. J Chem Phys 128:154115

    Article  PubMed  CAS  Google Scholar 

  184. Allen EC, Rutledge GC (2009) Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains. J Chem Phys 130:034904

    Article  PubMed  CAS  Google Scholar 

  185. Villa A, van der Vegt N. FA, Peter C (2009) Self-assembling dipeptides: including solvent degrees of freedom in a coarse-grained model. Phys Chem Chem Phys 11:2068–2076

    Article  PubMed  CAS  Google Scholar 

  186. Villa A, Peter C, van der Vegt N. FA (2009) Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation. Phys Chem Chem Phys 11:2077–2086

    Article  PubMed  CAS  Google Scholar 

  187. Villa A, Peter C, van der Vegt N. FA (2010) Transferability of nonbonded interaction potentials for coarse-grained simulations: benzene in water. J Chem Theor Comp 6:2434–2444

    Article  CAS  Google Scholar 

  188. Andersen HC, Chandler D, Weeks JD (1976) Roles of repulsive and attractive forces in liquids : the equilibrium theory of classical fluids. Adv Chem Phys 34:105

    Article  CAS  Google Scholar 

  189. Das A, Andersen, HC (2010) The multiscale coarse-graining method. V. Isothermal-isobaric ensemble. J Chem Phys 132:164106

    Google Scholar 

  190. Louis AA (2002) Beware of density dependent pair potentials. J Phys: Condens Matter 14:9187–9206

    Article  CAS  Google Scholar 

  191. Gohlke H, Thorpe MF (2006) A natural coarse graining for simulating large biomolecular motion. Biophys J 91:2115–2120

    Article  PubMed  CAS  Google Scholar 

  192. Zhang ZY, Lu LY, Noid WG, Krishna V, Pfaendtner J, Voth GA (2008) A systematic methodology for defining coarse-grained sites in large biomolecules. Biophys J 95:5073–5083

    Article  PubMed  CAS  Google Scholar 

  193. Zhang ZY, Pfaendtner J, Grafmuller A, Voth GA (2009) Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models. Biophys J 97:2327–2337

    Article  PubMed  CAS  Google Scholar 

  194. Arkhipov A, Freddolino P, Schulten, K (2006) Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 129:1767–1777

    Article  CAS  Google Scholar 

  195. Zhang Z, Voth GA (2010) Coarse-grained representations of large biomolecular complexes from low-resolution structural data. J Chem Theor Comp 6:2990–3002

    Article  CAS  Google Scholar 

  196. Stillinger FH, Weber TA (1985) Computer-simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  CAS  Google Scholar 

  197. Morriss-Andrews A, Rottler J, Plotkin, SS (2010) A systematically coarse-grained model for dna and its predictions for persistence length, stacking, twist, and chirality. J Chem Phys 132:035105

    Article  PubMed  CAS  Google Scholar 

  198. Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2001) Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J Chem Phys 115:2323–2347

    Article  CAS  Google Scholar 

  199. Liwo A, Kazmierkiewicz R, Czaplewski C, Groth M, Oldziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA (1998) United-residue force field for off-lattice protein-structure simulations: III. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials. J Comp Chem 19:259–276

    CAS  Google Scholar 

  200. Chaimovich A, Shell MS (2010) Relative entropy as a universal metric for multiscale errors. Phys Rev E 81:060104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support of an NSF CAREER award (NSF Grant No. MCB 1053970) and also start-up funding from the Pennsylvania State University. The author gratefully acknowledges Dr. Navrotskaya for her contributions in developing the present unified approach to systematic coarse-graining and J.W.Mullinax for his contributions in developing the g-YBG theory. WGN also acknowledges the insight and instruction of G. A. Voth, H.C. Andersen, and G. Ayton in many helpful and formative discussions. Finally, WGN gratefully acknowledges Vinod Krishna, Qiang Du, M. Scott Shell, Garegin Papoian, Ard A. Louis, John Weeks, and Matej Praprotnik for many helpful and insightful conversations on the subjects of this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Noid, W.G. (2013). Systematic Methods for Structurally Consistent Coarse-Grained Models. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics