Skip to main content

Simulation Studies of the Mechanism of Membrane Transporters

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Membrane transporters facilitate active transport of their specific substrates, often against their electrochemical gradients across the membrane, through coupling the process to various sources of cellular energy, for example, ATP binding and hydrolysis in primary transporters, and pre-established electrochemical gradient of molecular species other than the substrate in the case of secondary transporters. In order to provide efficient energy-coupling mechanisms, membrane transporters have evolved into molecular machines in which stepwise binding, translocation, and transformation of various molecular species are closely coupled to protein conformational changes that take the transporter from one functional state to another during the transport cycle. Furthermore, in order to prevent the formation of leaky states and to be able to pump the substrate against its electrochemical gradient, all membrane transporters use the widely-accepted “alternating access mechanism,” which ensures that the substrate is only accessible from one side of the membrane at a given time, but relies on complex and usually global protein conformational changes that differ for each family of membrane transporters. Describing the protein conformational changes of different natures and magnitudes is therefore at the heart of mechanistic studies of membrane transporters. Here, using a number of membrane transporters from diverse families, we present common protocols used in setting up and performing molecular dynamics simulations of membrane transporters and in analyzing the results, in order to characterize relevant motions of the system. The emphasis will be on highlighting how optimal design of molecular dynamics simulations combined with mechanistically oriented analysis can shed light onto key functionally relevant protein conformational changes in this family of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celik L, Schiott B, Tajkhorshid E (2008) Substrate binding and formation of an occluded state in the leucine transporter. Biophys J 94:1600–1612

    Article  PubMed  CAS  Google Scholar 

  2. Law CJ, Enkavi G, Wang D-N, Tajkhorshid E (2009) Structural basis of substrate selectivity in the glycerol-3-phosphate:phosphate antiporter GlpT. Biophys J 97:1346–1353

    Article  PubMed  CAS  Google Scholar 

  3. Li J, Tajkhorshid E (2009) Ion-releasing state of a secondary membrane transporter. Biophys J 97:L29–L31

    Article  PubMed  CAS  Google Scholar 

  4. Shaikh SA, Tajkhorshid E (2008) Potential cation and H+ binding sites in acid sensing ion channel-1. Biophys J 95:5153–5164

    Article  PubMed  CAS  Google Scholar 

  5. Huang Z, Tajkhorshid E (2008) Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys J 95:2292–2300

    Article  PubMed  CAS  Google Scholar 

  6. Wen P-C, Tajkhorshid E (2008) Dimer opening of the nucleotide binding domains of ABC transporters after atp hydrolysis. Biophys J 95:5100–5110

    Article  PubMed  CAS  Google Scholar 

  7. Gumbart J, Wiener MC, Tajkhorshid E (2009) Coupling of calcium and substrate binding through loop alignment in the outer membrane transporter BtuB. J Mol Biol 393:1129–1142

    Article  PubMed  CAS  Google Scholar 

  8. Huang Z, Tajkhorshid E (2010) Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter. Biophys J 99:1416–1425

    Article  PubMed  CAS  Google Scholar 

  9. Li J, Tajkhorshid E (2012) A gate-free pathway for substrate release from the inward-facing state of the Na+-galactose transporter. Biochim Biophys Acta Biomembr 1818:263–271

    Google Scholar 

  10. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:2406–2414

    Article  Google Scholar 

  11. Gumbart J, Wiener MC, Tajkhorshid E (2007) Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys J 93:496–504

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Tajkhorshid E (2008) Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc Natl Acad Sci USA 105:9598–9603

    Article  PubMed  CAS  Google Scholar 

  13. Shrivastava IH, Jiang J, Amara SG, Bahar I (2008) Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J Biol Chem 283:28680–28690

    Article  PubMed  CAS  Google Scholar 

  14. Khalili-Araghi F, Gumbart J, Wen P-C, Sotomayor M, Tajkhorshid E, and Schulten K (2009) Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol 19:128–137

    Article  PubMed  CAS  Google Scholar 

  15. Arkin IT, Xu H, Jensen M, Arbely E, Bennett ER, Bowers KJ, Chow E, Dror RO, Eastwood MP, Flitman-Tene R, Gregersen BA, Klepeis JL, Kolossváry I, Shan Y, Shaw DE (2007) Mechanism of Na+/H+ antiporting. Science 317:799–803

    Article  PubMed  CAS  Google Scholar 

  16. Olkhova E, Padan E, Michel H (2007) The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli. Biophys J 92:3784–3791

    Article  PubMed  CAS  Google Scholar 

  17. Cheng XL, Ivanov I, Wang HL, Sine SM, McCammon JA (2007) Nanosecond-timescale conformational dynamics of the human α7 nicotinic acetylcholine receptor. Biophys J 93:2622–2634

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Tajkhorshid E (2007) Molecular mechanisms of conduction and selectivity in aquaporin water channels. J Nutr 137:1509S–1515S

    PubMed  CAS  Google Scholar 

  19. Hashido M, Kidera A, Ikeguchi M (2007) Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 93:373–385

    Article  PubMed  CAS  Google Scholar 

  20. Huang X, Zhan C-G (2007) How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93:3627–3639

    Article  PubMed  CAS  Google Scholar 

  21. Holyoake J, Sansom MSP (2007) Conformational change in an MFS protein: MD simulations of LacY. Structure 15:873–884

    Article  PubMed  CAS  Google Scholar 

  22. Klauda JB, Brooks BR (2007) Sugar binding in lactose permease: anomeric state of a disaccharide influences binding structure. J Mol Biol 367:1523–1534

    Article  PubMed  CAS  Google Scholar 

  23. Cordero-Morales JF, Jogini V, Lewis A, Vasquez V, Cortes DM, Roux B, Perozo E (2007) Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 14:1062–1069

    Article  PubMed  CAS  Google Scholar 

  24. Sonne J, Kandt C, Peters GH, Hansen FY, Jansen MO, Tieleman DP (2007) Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD. Biophys J 92:2727–2734

    Article  PubMed  CAS  Google Scholar 

  25. Hub J, de Groot B (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105:1198–203

    Article  PubMed  CAS  Google Scholar 

  26. Henin J, Tajkhorshid E, Schulten K, Chipot C (2008) Diffusion of glycerol through Escherichia coli aquaglyceroporin GlpF. Biophys J 94:832–839

    Article  PubMed  CAS  Google Scholar 

  27. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA (2008) The mechanism of a neurotransmitter:sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 30:667–677

    Article  PubMed  CAS  Google Scholar 

  28. Noskov SY, Roux B (2008) Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J Mol Biol 377:804–818

    Article  PubMed  CAS  Google Scholar 

  29. Vasquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E (2008) A structural mechanism for MscS gating in lipid bilayers. Science 321:1210–1214

    Article  PubMed  CAS  Google Scholar 

  30. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802

    Article  CAS  Google Scholar 

  31. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  32. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  33. Darden T, York D, Pedersen LG (1993) Particle mesh Ewald: an N ⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  34. Feller SE, Yin D, Pastor RW, MacKerell AD Jr (1997) Molecular dynamics simulation of unsaturated lipids at low hydration: parametrization and comparison with diffraction studies. Biophys J 73:2269–2279

    Article  PubMed  CAS  Google Scholar 

  35. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  PubMed  CAS  Google Scholar 

  36. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    Article  PubMed  CAS  Google Scholar 

  37. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    Article  PubMed  CAS  Google Scholar 

  38. Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315:373–377

    Article  PubMed  CAS  Google Scholar 

  39. Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938

    Article  PubMed  CAS  Google Scholar 

  40. Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216

    Article  PubMed  CAS  Google Scholar 

  41. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–1390

    Article  PubMed  CAS  Google Scholar 

  42. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–521

    Article  PubMed  CAS  Google Scholar 

  43. Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104:19005–19010

    Article  PubMed  CAS  Google Scholar 

  44. Gerber S, Comellas-Bigler M, Goetz BA, Locher KP (2008) Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321:246–250

    Article  PubMed  CAS  Google Scholar 

  45. Kadaba NS, Kaiser JT, Johnson E, Lee A, Rees DC (2008) The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321:250–253

    Article  PubMed  CAS  Google Scholar 

  46. Khare D, Oldham ML, Orelle C, Davidson AL, Chen J (2009) Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 33:528–536

    Article  PubMed  CAS  Google Scholar 

  47. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  PubMed  CAS  Google Scholar 

  48. Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17:412–418

    Article  PubMed  CAS  Google Scholar 

  49. Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733

    Article  PubMed  CAS  Google Scholar 

  50. Nikaido K, Ames GF (1999) One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. J Biol Chem 274:26727–26735

    Article  PubMed  CAS  Google Scholar 

  51. Aleksandrov L, Aleksandrov AA, bao Chang X, Riordan JR (2002) First nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. J Biol Chem 277:15419–15425

    Google Scholar 

  52. Ernst R, Kueppers P, Klein CM, Schwarzmueller T, Kuchler K, Schmitt L (2008) A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proc Natl Acad Sci USA 105:5069–5074

    Article  PubMed  CAS  Google Scholar 

  53. Chen C, Peng E (2003) Nanopore sequencing of polynucleotides assisted by a rotating electric field. Appl Phys Lett 82:1308–1310

    Article  CAS  Google Scholar 

  54. Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149

    Article  PubMed  CAS  Google Scholar 

  55. Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24:1901–1910

    Article  PubMed  CAS  Google Scholar 

  56. Wen P-C, Tajkhorshid E (2008) Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J 95:5100–5110

    Article  PubMed  CAS  Google Scholar 

  57. Oloo EO, Fung EY, Tieleman DP (2006) The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter. J Biol Chem 281:28397–28407

    Article  PubMed  CAS  Google Scholar 

  58. Jones PM, George AM (2007) Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette. J Biol Chem 282:22793–22803

    Article  PubMed  CAS  Google Scholar 

  59. Jones PM, George AM (2009) Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins: Struct Func Bioinf 75:387–396

    Article  CAS  Google Scholar 

  60. Oliveira ASF, Baptista AM, Soares CM (2010) Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 114:5486–5496

    Article  PubMed  CAS  Google Scholar 

  61. Wen P-C, Tajkhorshid E (2011) Conformational coupling of the nucleotide-binding and the transmembrane domains in the maltose ABC transporter. Biophys J 101:680–690

    Article  PubMed  CAS  Google Scholar 

  62. Lange OF, Grubmüller H (2006) Generalized correlation for biomolecular dynamics. Proteins: Struct Func Bioinf 62:1053–1061

    Article  CAS  Google Scholar 

  63. Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neur 9:293–298

    Article  CAS  Google Scholar 

  64. Slotboom DJ, Konings WN, Lolkema JS (1999) Structural features of the glutamate transporter family. Microbiol Mol Biol Rev 63:293–307

    PubMed  CAS  Google Scholar 

  65. Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflug Arch Eur J Physiol 447:519–531

    Article  CAS  Google Scholar 

  66. Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    Article  PubMed  CAS  Google Scholar 

  67. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    Article  PubMed  CAS  Google Scholar 

  68. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814

    Article  PubMed  CAS  Google Scholar 

  69. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Structure and molecular mechanism of a Nucleobase-Cation-Symport-1 family transporter. Science 322:709–713

    Article  PubMed  CAS  Google Scholar 

  70. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MSP, Iwata S, Henderson PJF, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328:470–473

    Article  PubMed  CAS  Google Scholar 

  71. Ressl S, van Scheltinga ACT, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458:47–52

    Article  PubMed  CAS  Google Scholar 

  72. Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460:1040–1043

    PubMed  CAS  Google Scholar 

  73. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  74. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    Article  PubMed  CAS  Google Scholar 

  75. Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885

    Article  PubMed  CAS  Google Scholar 

  76. Tao Z, Zhang Z, Grewer C (2006) Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J Biol Chem 281:10263–10272

    Article  PubMed  CAS  Google Scholar 

  77. Larsson PH, Tzingounis AV, Koch HP, Kavanaugh MP (2004) Fluorometric measurements of conformational changes in glutamate transporters. Proc Natl Acad Sci USA 101:3951–3956

    Article  PubMed  CAS  Google Scholar 

  78. Koch HP, Hubbard JM, Larsson HP (2007) Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter excitatory amino acid transporter 3. J Biol Chem 282:24547–24553

    Article  PubMed  CAS  Google Scholar 

  79. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  CAS  Google Scholar 

  80. Law CJ, Maloney PC, Wang D-N (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  PubMed  CAS  Google Scholar 

  81. Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  PubMed  CAS  Google Scholar 

  82. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  83. Hirai T, Subramaniam S (2004) Structure and transport mechanism of the bacterial oxalate transporter oxlt. Biophys J 87:3600–3607

    Article  PubMed  CAS  Google Scholar 

  84. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744

    Article  PubMed  CAS  Google Scholar 

  85. Salasburgos A, Iserovich P, Zuniga F, Vera J, Fischbarg J (2004) Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J 87:2990–2999

    Article  CAS  Google Scholar 

  86. Lemieux MJ, Huang Y, Wang D-N (2004) Glycerol-3-phosphate transporter of escherichia coli: Structure, function and regulation. Res Microbiol 155:623–629

    Article  PubMed  CAS  Google Scholar 

  87. Holyoake J, Caulfeild V, Baldwin S, Sansom M (2006) Modeling, docking, and simulation of the major facilitator superfamily. Biophys J 91:L84–L86

    Article  PubMed  CAS  Google Scholar 

  88. Lemieux MJ (2007) Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure (review). Mol Membr Biol 24:333–341

    Article  PubMed  CAS  Google Scholar 

  89. Lemieux M, Huang Y, Wang D (2004) The structural basis of substrate translocation by the glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 14:405–412

    Article  PubMed  CAS  Google Scholar 

  90. Law CJ, Almqvist J, Bernstein A, Goetz RM, Huang Y, Soudant C, Laaksonen A, Hovmölle S, Wang D-N (2008) Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter glpt. J Mol Biol 378:828–839

    Article  PubMed  CAS  Google Scholar 

  91. Fann MC, Davies AH, Varadhachary A, Kuroda T, Sevier C, Tsuchiya T, Maloney PC (1998) Identification of two essential arginine residues in uhpt, the sugar phosphate antiporter of Escherichia coli. J Membr Biol 164:187–195

    Article  PubMed  CAS  Google Scholar 

  92. Stroud RM (2007) Transmembrane transporters: an open and closed case. Proc Natl Acad Sci USA 104:1445–1446

    Article  PubMed  CAS  Google Scholar 

  93. Lemieux MJ, Huang Y, Wang D-N (2005) Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli. J Electron Microsc 54:i43–i46

    Google Scholar 

  94. D’rozario RSG, Sansom MSP (2008) Helix dynamics in a membrane transport protein: comparative simulations of the glycerol-3-phosphate transporter and its constituent helices. Mol Membr Biol 25:571–573

    Article  PubMed  CAS  Google Scholar 

  95. Tsigelny IF, Greenberg J, Kouznetsova V, Nigam SK (2008) Modelling of glycerol-3-phosphate transporter suggests a potential ‘tilt’ mechanism involved in its function. J Bioinformatics Comput Biol 6:885–904

    Article  CAS  Google Scholar 

  96. Law CJ, Yang Q, Soudant C, Maloney PC, Wang D-N (2007) Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT. Biochemistry 46:12190–12197

    Article  PubMed  CAS  Google Scholar 

  97. Enkavi G, Tajkhorshid E (2010) Simulation of spontaneous substrate binding revealing the binding pathway and mechanism and initial conformational response of GlpT. Biochemistry 49:1105–1114

    Article  PubMed  CAS  Google Scholar 

  98. Mertz JE, Pettitt BM (1994) Molecular dynamics at a constant pH. Supercomputer Appl High Perform Comput 8:47–53

    Article  Google Scholar 

  99. Baptista AM, Teixeira VH, Soares CM (2002) Constant-pH molecular dynamics using stochastic titration. J Chem Phys 117:4184–4200

    Article  CAS  Google Scholar 

  100. Dlugosz M, Antosiewicz JM (2004) Constant-pH molecular dynamics simulations: a test case of succinic acid. Chem Phys 302:161–170

    Article  CAS  Google Scholar 

  101. Dlugosz M, Antosiewicz JM, Robertson AD (2004) Constant-pH molecular dynamics study of protonation-structure relationship in a hexapeptide derived from ovomucoid third domain. Phys Rev E 69:021915

    Article  CAS  Google Scholar 

  102. Bürgi R, Kollman PA, van Gunsteren WF (2002) Simulating proteins at constant pH: an approach combining molecular dynamics and Monte Carlo simulation. Proteins: Struct Func Gen 47:469–480

    Article  CAS  Google Scholar 

  103. Mongan J, Case DA, McCammon JA (2004) Constant pH molecular dynamics in generalized Born implicit solvent. J Comp Chem 25:2038–2048

    Article  CAS  Google Scholar 

  104. Lee MS, Salsbury FR Jr, Brooks III CL (2004) Constant-pH molecular dynamics using continuous titration coordinates. J Comp Chem 25:2038–2048

    Article  CAS  Google Scholar 

  105. Mongan J, Case DA (2005) Biomolecular simulations at constant pH. Curr Opin Struct Biol 15:157–163

    Article  PubMed  CAS  Google Scholar 

  106. Machuqueiro M, Baptista AM (2007) The ph-dependent conformational states of kyotorphin: a constant-ph molecular dynamics study. Biophys J 92:1836–1845

    Article  PubMed  CAS  Google Scholar 

  107. Chennubhotla C, Rader A, Yang L-W, Bahar I (2005) Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys Biol 2:S173–S180

    Article  PubMed  CAS  Google Scholar 

  108. Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global Dynamics of Proteins: bridging Between Structure and Function. Ann Rev Biophys 39:23–42

    Article  CAS  Google Scholar 

  109. Tirion M (1996) Large amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 77:1905–1908

    Article  PubMed  CAS  Google Scholar 

  110. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

    Article  PubMed  CAS  Google Scholar 

  111. Erman B (2006) The Gaussian network model: precise predictions of residue fluctuations and application to binding problems. Biophys J 91:3589–3599

    Article  PubMed  CAS  Google Scholar 

  112. Eyal E, Yang LW, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22:2619–2627

    Article  PubMed  CAS  Google Scholar 

  113. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure (London, England: 1993) 13:373–380

    Google Scholar 

  114. Brüschweiler R (1995) Collective protein dynamics and nuclear spin relaxation. J Chem Phys 102:3396–3403

    Article  Google Scholar 

  115. Kanner BI, Zomot E (2008) Sodium-coupled neurotransmitter transporters. Chem Rev 108:1654–1668

    Article  PubMed  CAS  Google Scholar 

  116. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–233

    Article  PubMed  CAS  Google Scholar 

  117. Shaikh SA, Tajkhorshid E (2010) Modeling and dynamics of the inward-facing state of a Na+/Cl dependent neurotransmitter transporter homologue. PLoS Comput Biol 6(8):e1000905

    Article  PubMed  CAS  Google Scholar 

  118. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Article  PubMed  CAS  Google Scholar 

  119. Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Targeted molecular dynamics simulation of conformational change — application to the T↔R transition in insulin. Mol Sim 10:291–308

    Article  CAS  Google Scholar 

  120. Quick M, Winther A-ML, Shi L, Nissen P, Weinstein H, Javitch JA (2009) Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc Natl Acad Sci USA 106:5563–5568

    Article  PubMed  CAS  Google Scholar 

  121. Zhao Y, Terry D, Shi L, Weinstein H, Blanchard SC, Javitch JA (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465:188–193

    Article  PubMed  CAS  Google Scholar 

  122. Forrest LR, Zhang Y-W, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 105:10338–10343

    Article  PubMed  CAS  Google Scholar 

  123. Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355

    Article  PubMed  CAS  Google Scholar 

  124. Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567

    Article  PubMed  CAS  Google Scholar 

  125. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779

    Article  PubMed  CAS  Google Scholar 

  126. Kanner BI (1983) Bioenergetics of neurotransmitter transport. Biochim Biophys Acta 726:293–316

    Article  PubMed  CAS  Google Scholar 

  127. Kanner BI, Schuldiner S (1987) Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 22:1–39

    Article  PubMed  CAS  Google Scholar 

  128. Kanner BI (1989) Ion-coupled neurotransmitter transport. Curr Opin Cell Biol 1:735–738

    Article  PubMed  CAS  Google Scholar 

  129. Poolman B, Konings W (1993) Secondary solute transport in bacteria. Biochim Biophys Acta 1183:5–39

    Article  PubMed  CAS  Google Scholar 

  130. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581

    Article  PubMed  CAS  Google Scholar 

  131. Bayas MV, Schulten K, Leckband D (2004) Forced dissociation of the strand dimer interface between C-cadherin ectodomains. Mech Chem Biosystems 1:101–111

    CAS  Google Scholar 

  132. Jensen MØ, Yin Y, Tajkhorshid E, Schulten K (2007) Sugar transport across lactose permease probed by steered molecular dynamics. Biophys J 93:92–102

    Article  PubMed  CAS  Google Scholar 

  133. Sujatha M, Balaji PV (2009) Identification of common structural features of binding sites in galactose-specific proteins. Proteins 55:44–65

    Article  CAS  Google Scholar 

  134. Abramson J, Wright E (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432

    Article  PubMed  CAS  Google Scholar 

  135. Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31:418–426

    Article  PubMed  CAS  Google Scholar 

  136. Ziegler C, Bremer E, Kramer R (2010) The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 78:13–34

    PubMed  CAS  Google Scholar 

  137. Claxton DP, Quick M, Shi L, de Carvalho FD, Weinstein H, Javitch JA, Mchaourab HS (2010) Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol 17:822–828

    Article  PubMed  CAS  Google Scholar 

  138. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    Google Scholar 

  139. Kramer R, Morbach S (2004) Betp of corynebacterium glutamicum, a transporter with three differnt functions: betaine transport, osmosensing, and osmoregulation. Biochim Biophys Acta 1658:31–36

    Article  PubMed  CAS  Google Scholar 

  140. Kramer R (2009) Osmosensing and osmosignaling in corynebacterium glutamicum. Amino Acid 37:487–497

    Article  CAS  Google Scholar 

  141. Farwick M, Siewe R, Kramer R (1995) Glycine betaine uptake after hyperosmotic shift in corynebacterium glutamicum. J Bacteriol 177:4690–4695

    PubMed  CAS  Google Scholar 

  142. Peter H, Burkovski A, Kramer R (1996) Isolation, characterization, and expression of the corynebacterium glutamicum betp gene, encoding the transport system for the compatible solute glycine betaine. J Bacteriol 178:5229–5234

    PubMed  CAS  Google Scholar 

  143. Zomot E, Bahar I (2010) The sodium/galactose symporter crystal structure is a dynamic, not so occluded state. Mol Biosyst 6:1040–1046

    Google Scholar 

  144. Mahinthichaichan P, Tajkhorshid E (2011) Mechanism of ion-couple substrate translocation in an inward-facing secondary membrane transporter. Submitted

    Google Scholar 

  145. Varma S, Rempe SB (2008) Structural transitions in ion coordination driven by changes in competition for ligand binding. J Am Chem Soc 130:15405–15419

    Article  PubMed  CAS  Google Scholar 

  146. Toney M, Hohenester E, Cowan S, Jansonius J (1993) Dialkylglycine decarboxylase structure: bifunctional active site and alkali metal sites. Science 261:756–759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The studies reported in this review were supported by grants from NIH (R01-GM086749, R01-GM067887, and P41-RR05969). The authors acknowledge computer time at TeraGrid resources (grant number MCA06N060), as well as computer time from the DoD High Performance Computing Modernization Program at the Arctic Region Supercomputing Center, University of Alaska at Fairbanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Tajkhorshid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Enkavi, G. et al. (2013). Simulation Studies of the Mechanism of Membrane Transporters. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics