Skip to main content

Recipes for Free Energy Calculations in Biomolecular Systems

  • Protocol
  • First Online:
Book cover Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

During the last decade, several methods for sampling phase space and calculating various free energies in biomolecular systems have been devised or refined for molecular dynamics (MD) simulations. Thus, state-of-the-art methodology and the ever increasing computer power allow calculations that were forbidden a decade ago. These calculations, however, are not trivial as they require knowledge of the methods, insight into the system under study, and, quite often, an artful combination of different methodologies in order to avoid the various traps inherent in an unknown free energy landscape. In this chapter, we illustrate some of these concepts with two relatively simple systems, a sugar ring and proline oligopeptides, whose free energy landscapes still offer considerable challenges. In order to explore the configurational space of these systems, and to surmount the various free energy barriers, we combine three complementary methods: a nonequilibrium umbrella sampling method (adaptively biased MD, or ABMD), replica-exchange molecular dynamics (REMD), and steered molecular dynamics (SMD). In particular, ABMD is used to compute the free energy surface of a set of collective variables; REMD is used to improve the performance of ABMD, to carry out sampling in space complementary to the collective variables, and to sample equilibrium configurations directly; and SMD is used to study different transition mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babin V, Roland C, Sagui C (2008) Adaptively biased molecular dynamics for free energy calculations. J Chem Phys 128:134101

    Article  PubMed  Google Scholar 

  2. Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood. Computing Science and statistics: the 23rd symposium on the interface. Interface Foundation, Fairfax, pp 156–163

    Google Scholar 

  3. Izrailev S, Stepaniants B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K (1998) Steered molecular dynamics. Computational molecular dynamics: challenges, methods, ideas. Springer, Berlin, Germany

    Google Scholar 

  4. Moradi M, Babin V, Roland C, Darden T, Sagui C (2009) Conformations and free energy landscapes of polyproline peptides. Proc Natl Aca Sci USA 106:20746

    Article  CAS  Google Scholar 

  5. Moradi M, Babin V, Roland C, Sagui C (2010) A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J Chem Phys 133:125104

    Article  PubMed  Google Scholar 

  6. Moradi M, Lee JG, Babin V, Roland C, Sagui C (2010) Free energy and structure of polyproline peptides: an ab initio and classical molecular dynamics investigation. Int J Quant Chem 110:2865–2879

    Article  CAS  Google Scholar 

  7. Frenkel D, Smit B (2002) Understanding molecular simulation. Academic Press, Orlando, USA

    Google Scholar 

  8. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  9. Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198

    Google Scholar 

  10. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg J (1992) The weighted histogram analysis method for free energy calculation of biomolecules: 1 The Method. J Comput Chem 13:1011

    Article  CAS  Google Scholar 

  11. van Duijneveldt JS, Frenkel D (1992) Computer simulation study of free energy barriers in crystal nucleation. The method. J Chem Phys 96:4655–4668

    Article  Google Scholar 

  12. Lelièvre T, Rousset M, Stoltz G (2007) Computation of free energy profiles with parallel adaptive dynamics. J Chem Phys 126:134111

    Article  PubMed  Google Scholar 

  13. Bussi G, Laio A, Parrinello M (2006) Equilibrium free energies from nonequilibrium metadynamics. Phys Rev Lett 96:090601

    Article  PubMed  Google Scholar 

  14. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8:695–708

    Article  PubMed  CAS  Google Scholar 

  15. Wang F, Landau DP (2001) Phys Rev Lett 115:2050–2053

    Google Scholar 

  16. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566

    Article  PubMed  CAS  Google Scholar 

  17. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using car-parrinello molecular dynamics. Phys Rev Lett 90:238302–238311

    Article  PubMed  Google Scholar 

  18. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Google Scholar 

  19. De Boor C (1978) A practical guide to splines. Springer, New York

    Book  Google Scholar 

  20. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem 110:3533–3539

    CAS  Google Scholar 

  21. Sugita Y, Kitao A, Okamoto Y (2000) J Chem Phys 113:6042

    Article  CAS  Google Scholar 

  22. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128:13435–13441

    Article  PubMed  CAS  Google Scholar 

  23. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111:4553–4559

    Article  PubMed  CAS  Google Scholar 

  24. Case D et al (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  25. Hooft RWW, van Eijck BP, Kroon J (1992) An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol. J Chem Phys 97:6690–6694

    Article  CAS  Google Scholar 

  26. Babin V, Roland C, Darden TA, Sagui C (2006) The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections. J Chem Phys 125:204909

    Article  PubMed  Google Scholar 

  27. Babin V, Sagui C (2010) Conformational free energies of methyl-α-L-iduronic and methyl-β-D-glucronic acids in water. J Chem Phys 132:104108

    Article  PubMed  Google Scholar 

  28. Laghaei R, Mousseau N, Wei G (2010) Effect of the disulfide bond on the monomeric structure of human amylin studied by combined Hamiltonian and temperature replica exchange molecular dynamics simulations. J Phys Chem B 114:7071–7077

    Article  PubMed  CAS  Google Scholar 

  29. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  30. Crooks GE (2000) Path-ensemble averages in systems driven far from equilibrium. Phys Rev E 61:2361–2366

    Article  CAS  Google Scholar 

  31. Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91:140601

    Article  PubMed  Google Scholar 

  32. Kosztin I, Barz B, Janosi L (2006) Calculating potentials of mean force and diffusion coefficients from nonequilibrium processes without Jarzynski’s equality. J Chem Phys 124:064106

    Article  Google Scholar 

  33. Ensing B, Laio A, Parrinello M, Klein M (2005) A recipe in the computation of the free energy barrier and the lowest free energy path of concerted reactions. J Phys Chem B 109:6676–6687

    Article  PubMed  CAS  Google Scholar 

  34. Rao VSR, Qasba PK, Balaji PV, Chandrasekaran R (1998) Conformation of carbohydrates. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  35. Kirschner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci 98:10541–10545

    Article  PubMed  CAS  Google Scholar 

  36. Almond A, Sheehan JK (2003) Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology 13:255–264

    Article  PubMed  CAS  Google Scholar 

  37. Kräutler V, Müller M, Hünenberger PH (2007) Conformation, dynamics, solvation and relative stabilities of selected [beta]-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field. Carbohydr Res 342:2097–2124

    Article  PubMed  Google Scholar 

  38. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comp Chem 29:622–655

    CAS  Google Scholar 

  39. Christen M, van Gunsteren WF (2008) On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: a review. J Comp Chem 29:157–166

    Article  CAS  Google Scholar 

  40. Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  41. Jorgensen WL, Chandrasekhar J, Madura J, Klein ML (1983) Comparison of Simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  42. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129

    Article  CAS  Google Scholar 

  43. Hawkins GD, Cramer CJ, Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  44. Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  45. Tsui V, Case D (2001) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers (Nucl Acid Sci) 56:275–291

    Article  CAS  Google Scholar 

  46. Brünger A, Brooks CL, Karplus M (1984) Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett 105:495–500

    Article  Google Scholar 

  47. Darden TA, York DM, Pedersen LG (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  48. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  49. Brandts JF, Halvorson HR, Brennan M (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14:4953–4963

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka S, Scheraga HA (1977) Hypothesis about the mechanism of protein folding. Macromolecules 10:291–304

    Article  PubMed  CAS  Google Scholar 

  51. Schmid FX, Mayr LM, Mücke M, Schönbrunner ER (1993) Prolyl isomerases: role in protein folding. Adv Protein Chem 44:25–66

    Article  PubMed  CAS  Google Scholar 

  52. Houry WA, Scheraga HA (1996) Nature of the unfolded state of Ribonuclease A: effect of cis-trans X-Pro peptide bond isomerization. Biochemistry 35:11719–11733

    Article  PubMed  CAS  Google Scholar 

  53. Wedemeyer WJ, Welker E, Scheraga HA (2002) Proline cis-trans isomerization and protein folding. Biochemistry 41:14637–14644

    Article  PubMed  CAS  Google Scholar 

  54. Reimer U, Scherer G, Drewello M, Kruber S, Schutkowski M, Fischer G (1998) Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J Mol Biol 279:449–460

    Article  PubMed  CAS  Google Scholar 

  55. Grathwohl C, Wuthrich K (1976) The X-Pro peptide bond as an NMR probe for conformational studies of flexible linear peptides. Biopolymers 15:2025–2041

    Article  PubMed  CAS  Google Scholar 

  56. Grathwohl C, Wuthrich K (1976) Nmr studies of the molecular conformations in the linear oligopeptides H-(L-Ala) n -L-Pro-OH. Biopolymers 15:2043–2057

    Article  PubMed  CAS  Google Scholar 

  57. Steinberg IZ, Harrington WF, Berger A, Sela M, Katchalski E (1960) The configurational changes of poly-L-proline in solution. J Am Chem Soc 82:5263–5279

    Article  CAS  Google Scholar 

  58. Gornick F, Mandelkern L, Diorio AF, Roberts DE (1964) Evidence for a cooperative intramolecular transition in poly-L-proline. J Am Chem Soc 86:2549–2555

    Article  CAS  Google Scholar 

  59. Mandelkern L (1967) Poly-L-proline. In: Fasman GD (ed.) Poly-α-amino acids. Marcel Dekker, New York

    Google Scholar 

  60. Strassmair H, Engel J, Zundel G (1969) Binding of alcohols to the peptide CO-group of poly-L-proline in the I and II conformation. I. Demonstration of the binding by infrared spectroscopy and optical rotatory dispersion. Biopolymers 8:237–246

    CAS  Google Scholar 

  61. Tanaka S, Scheraga HA (1975) Theory of the cooperative transition between two ordered conformations of poly(L-proline). II. Molecular theory in the absence of solvent. Macromolecules 8:504–516

    CAS  Google Scholar 

  62. Tanaka S, Scheraga HA (1975) Theory of the cooperative transition between two ordered conformations of poly(L-proline). III. Molecular theory in the presence of solvent. Macromolecules 8:516–521

    CAS  Google Scholar 

  63. Kofron JL, Kuzmic P, Kishore V, Colon-Bonilla E, Rich DH (1991) Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 30:6127–6134

    Article  PubMed  CAS  Google Scholar 

  64. Kakinoki S, Hirano Y, Oka M (2005) On the stability of polyproline-I and II structures of proline oligopeptides. Poly Bull 53:109–115

    Article  CAS  Google Scholar 

  65. Traub W, Shmueli U (1963) Structure of poly-L-proline I. Nature 198:1165–1166

    Article  Google Scholar 

  66. Cowan PM, McGavin S (1955) Structure of poly-L-proline. Nature 176:501–503

    Article  CAS  Google Scholar 

  67. Mutter M, Wohr T, Gioria S, Keller M (1999) Pseudo-prolines: induction of cis/trans-conformational interconversion by decreased transition state barriers. Biopolymers 51:121–128

    Article  PubMed  CAS  Google Scholar 

  68. Stryer L, Haugland RP (1967) Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. Proc Natl Acad Sci USA 58:719–726

    Article  PubMed  CAS  Google Scholar 

  69. Jacob J, Baker B, Bryant GR, Cafiso DS (1999) Distance estimates from paramagnetic enhancements of nuclear relaxatio n in linear and flexible model peptides. Biophys J 77:1086–1092

    Article  PubMed  CAS  Google Scholar 

  70. Watkins LP, Chang H, Yang H (2006) Quantitative single-molecule conformational distributions: a case stud y with poly-(L-proline). J Phys Chem A 110:5191–5203

    Article  PubMed  CAS  Google Scholar 

  71. Sahoo H, Roccatano D, Hennig A, Nau WM (2007) A spectroscopic ruler for short polyprolines. J Am Chem Soc 129:9762–9772

    Article  PubMed  CAS  Google Scholar 

  72. Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA (2005) Polyproline and the spectroscopic ruler revisited with single-molecule fluorescence. Proc Natl Acad Sci USA 102:9754–9759

    Article  Google Scholar 

  73. Best RB, Merchant KA, Gopich IV, Schuler B, Bax A, Eaton WA (2007) Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc Natl Acad Sci USA 104:18964–18969

    Article  PubMed  CAS  Google Scholar 

  74. Doose S, Neuweiler H, Barsch H, Sauer M (2007) Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. Proc Natl Acad Sci USA 104:17400–17405

    Article  PubMed  CAS  Google Scholar 

  75. Dolghih E, Ortiz W, Kim S, Krueger BP, Krause JL, Roitberg AE (2009) Theoritical studies of short polyproline systems: recalibration of molecular ruler. J Phys Chem A 113:4639–4646

    Article  PubMed  CAS  Google Scholar 

  76. Grathwohl C, Wuthrich K (1981) Nmr studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20:2623–2633

    Article  CAS  Google Scholar 

  77. Phillips WD (1955) Restricted rotation in amides as evidenced by nuclear magnetic resonance. J Phys Chem 23:1363–1264

    Article  CAS  Google Scholar 

  78. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell Univ. Press, Ithaca, NY

    Google Scholar 

  79. Tonelli AE (1973) Estimate of the barriers hindering rotation about the C.alpha.-C’ bond between the cis’ and trans’ conformations in an isolated L-proline residue. J Am Chem Soc 95:5946–5948

    Article  PubMed  CAS  Google Scholar 

  80. McDonald DC, Still WC (1996) Molecular Mechanics parameters and conformational free energies of proline-containing peptides. J Org Chem 61:1385–1391

    Article  CAS  Google Scholar 

  81. Venkatachalam CM, Price BJ, Krimm S (2004) A theoretical estimate of the energy barriers between stable conformations of the proline dimer. Biopolymers 14:1121–1132

    Article  Google Scholar 

  82. Kang YK, Choi HY (2004) Cis–trans isomerization and puckering of proline residue. Biophys Chem 111:135–142

    Article  PubMed  CAS  Google Scholar 

  83. Kang YK, Jhon JS, Park HS (2006) Conformational preferences of proline oligopeptides. J Phys Chem B 110:17645–17655

    Google Scholar 

  84. Moradi M, Babin V, Sagui C, Roland C (2010) A statistical analysis of the PPII propensity of amino acid guests in proline-rich peptides. Biophysical J 100:1083

    Google Scholar 

  85. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104:3712–3720

    Article  CAS  Google Scholar 

  86. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins 55:383–394

    Article  PubMed  CAS  Google Scholar 

  87. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  PubMed  CAS  Google Scholar 

  88. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  89. Lin LN, Brandts JF (1979) Role of cis-trans isomerism of the peptide bond in protease specificity. Kinetic studies on small proline-containing peptides and on polyproline. Biochemistry 18:5037–5042

    CAS  Google Scholar 

  90. Lin LN, Brandts JF (1980) Kinetic mechanism for conformational transitions between poly-L-prolines I and II: a study utilizing the cis-trans specificity of a proline-specific protease. Biochemistry 19:3055–3059

    Article  PubMed  CAS  Google Scholar 

  91. Torchia DA, Bovey FA (1971) a nuclear magnetic resonance study of poly(l-proline) in aqueous and aqueous salt solutions. Macromolecules 4:246–251

    Article  CAS  Google Scholar 

  92. Zimmerman SS, Pottle MS, Némethy G, Scheraga HA (1977) Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. Macromolecules 10:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF via FRG-0804549 and 1021883, and DOE. We also thank the NC State HPC for extensive computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste Sagui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moradi, M., Babin, V., Sagui, C., Roland, C. (2013). Recipes for Free Energy Calculations in Biomolecular Systems. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics