Skip to main content

Co-Immunoprecipitation of Long Noncoding RNAs

  • Protocol
  • First Online:
Book cover Genomic Imprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 925))

Abstract

It is now estimated that the human genome encodes thousands of long noncoding (lnc)RNAs. These novel molecules are causing a paradigm shift in the field of molecular biology as a number of lncRNAs have been shown to be involved in a wide range of biological functions including regulation of gene expression. Also, misregulation of lncRNAs has been observed in human diseases such as cancer and neurological disorders. These findings have spurred a huge interest in elucidating the functions and mechanisms of lncRNAs; and therefore, the need for new methods to do so. In this chapter, we discuss RIP-Seq, a method that is utilized to discover the lncRNA partners of a specific protein. This procedure involves immunoprecipitation of a protein from cross-linked cell lysate followed by reverse-cross-linking, isolation, and deep sequencing of RNAs, leading to the identification of all lncRNAs that are associated with a specific protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  2. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    Article  PubMed  CAS  Google Scholar 

  3. Wang J, Zhang J, Zheng H, Li J, Liu D, Li H, Samudrala R, Yu J, Wong GK (2004) Mouse transcriptome: neutral evolution of ‘non-coding’ complementary DNAs. Nature 431: 1 p following 757; discussion following 757

    Google Scholar 

  4. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181

    Article  PubMed  CAS  Google Scholar 

  5. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300

    Article  PubMed  CAS  Google Scholar 

  6. Clark MB, Mattick JS (2011) Long noncoding RNAs in cell biology. Semin Cell Dev Biol 22:366–376

    Article  PubMed  CAS  Google Scholar 

  7. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  PubMed  CAS  Google Scholar 

  8. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  PubMed  CAS  Google Scholar 

  9. Khalil A, Huarte M, Rinn J (2010) The emerging non-coding RNA World. In: Slack F (ed) MicroRNAs in development and cancer, vol 1. Imperial College Press, London, pp 17–44

    Google Scholar 

  10. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  PubMed  CAS  Google Scholar 

  11. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  PubMed  CAS  Google Scholar 

  12. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  PubMed  CAS  Google Scholar 

  13. Carninci P, Hayashizaki Y (2007) Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 17:139–144

    Article  PubMed  CAS  Google Scholar 

  14. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  PubMed  CAS  Google Scholar 

  15. Lipovich L, Johnson R, Lin CY (2010) MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophy 1799:597–615

    Article  CAS  Google Scholar 

  16. Pontier DB, Gribnau J (2011) Xist regulation and function explored. Hum Genet 130:223–236

    Article  PubMed  Google Scholar 

  17. Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12:429–442

    Article  PubMed  CAS  Google Scholar 

  18. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  PubMed  CAS  Google Scholar 

  19. Khalil AM, Rinn JL (2011) RNA-protein interactions in human health and disease. Semin Cell Dev Biol 22(4):359–365

    Article  PubMed  CAS  Google Scholar 

  20. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  21. Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex ­chromosome inactivation and reactivation ­during mammalian spermatogenesis. Proc Natl Acad Sci U S A 101:16583–16587

    Article  PubMed  CAS  Google Scholar 

  22. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed  CAS  Google Scholar 

  23. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed  CAS  Google Scholar 

  24. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  PubMed  CAS  Google Scholar 

  25. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  PubMed  CAS  Google Scholar 

  26. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  PubMed  CAS  Google Scholar 

  27. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720

    Article  PubMed  CAS  Google Scholar 

  28. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  PubMed  CAS  Google Scholar 

  29. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C (2010) Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137:2493–2499

    Article  PubMed  CAS  Google Scholar 

  30. Meller VH, Gordadze PR, Park Y, Chu X, Stuckenholz C, Kelley RL, Kuroda MI (2000) Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr Biol 10:136–143

    Article  PubMed  CAS  Google Scholar 

  31. Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522

    Article  PubMed  CAS  Google Scholar 

  32. Park Y, Kelley RL, Oh H, Kuroda MI, Meller VH (2002) Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science 298:1620–1623

    Article  PubMed  CAS  Google Scholar 

  33. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y, Suzawa M, Kobayashi Y, Yano T, Yoshikawa H et al (2001) A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 20:1341–1352

    Article  PubMed  CAS  Google Scholar 

  35. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    Article  PubMed  Google Scholar 

  36. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26:182–190

    Article  PubMed  CAS  Google Scholar 

  37. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10:1692–1694

    Article  PubMed  CAS  Google Scholar 

  38. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad M. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moran, V.A., Niland, C.N., Khalil, A.M. (2012). Co-Immunoprecipitation of Long Noncoding RNAs. In: Engel, N. (eds) Genomic Imprinting. Methods in Molecular Biology, vol 925. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-011-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-011-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-010-6

  • Online ISBN: 978-1-62703-011-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics