Skip to main content

Genome-Wide Analysis of DNA Methylation in Low Cell Numbers by Reduced Representation Bisulfite Sequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 925))

Abstract

Development of high-throughput sequencing technologies now enables genome-wide analysis of DNA methylation of mammalian cells and tissues. Here, we present a protocol for Reduced Representation Bisulfite Sequencing (RRBS) applicable to low amounts of starting material (from 200 to 5,000 cells). RRBS is a cost-effective and powerful technique offering the advantages of absolute DNA methylation quantification and single nucleotide resolution while covering mainly CpG islands. Typically one sequencing experiment using the Illumina Genome Analyser IIx platform provides information on the DNA methylation status of more than half of the CpG islands of the mouse genome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42. doi:10.1016/j.tig.2011.09.004

    Article  PubMed  Google Scholar 

  2. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  PubMed  CAS  Google Scholar 

  3. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  PubMed  CAS  Google Scholar 

  4. Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nature Biotechnol 28:1097–1105

    Article  CAS  Google Scholar 

  5. Bock C, Tomazou EM, Brinkman AB et al (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28:1106–1114

    Article  PubMed  CAS  Google Scholar 

  6. Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  PubMed  CAS  Google Scholar 

  7. Serre D, Lee BH, Ting AH (2010) MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399

    Article  PubMed  CAS  Google Scholar 

  8. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  PubMed  CAS  Google Scholar 

  9. Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed  CAS  Google Scholar 

  10. Gu H, Bock C, Mikkelsen TS et al (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7:133–136

    Article  PubMed  CAS  Google Scholar 

  11. Smallwood SA, Tomizawa S-I, Krueger F et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  PubMed  CAS  Google Scholar 

  12. Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481

    Article  PubMed  CAS  Google Scholar 

  13. Illingworth RS, Gruenewald-Schneider U, Webb S et al (2010) Orphan CpG Islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134

    Article  PubMed  Google Scholar 

  14. Quail MA, Kozarewa I, Smith F et al (2008) PERSPECTIVE A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  PubMed  CAS  Google Scholar 

  15. Krueger F, Andrews SR, Osborne CS (2011) Large scale loss of data in low-diversity illumina sequencing libraries can be recovered by deferred cluster calling. PLoS One 6:e16607

    Article  PubMed  CAS  Google Scholar 

  16. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council, the Medical Research Council, and the Centre for Trophoblast Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Kelsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smallwood, S.A., Kelsey, G. (2012). Genome-Wide Analysis of DNA Methylation in Low Cell Numbers by Reduced Representation Bisulfite Sequencing. In: Engel, N. (eds) Genomic Imprinting. Methods in Molecular Biology, vol 925. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-011-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-011-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-010-6

  • Online ISBN: 978-1-62703-011-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics