Skip to main content

Rational Design of Peptide Ligands Against a Glycolipid by NMR Studies

  • Protocol
  • First Online:
Book cover Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 928))

Abstract

Ganglioside GD2 is a cell surface glycosphingolipid that is targeted clinically for cancer diagnosis, prognosis, and therapy. The conformations of free GD2 and of GD2 bound to anti-GD2 mAb 3F8 were resolved by saturation transfer difference nuclear magnetic resonance and molecular modeling. Then small molecule cyclic peptide ligands that bind to GD2 selectively were designed, and shown to affect GD2-mediated signal transduction. The solution structure of the GD2-bound conformation of the peptide ligands showed an induced-fit binding mechanism. This work furthers the concept of rationally designing ligands for carbohydrate targets; and may be expanded to other clinically relevant gangliosides.

These two authors contributed equally in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pellecchia M, Bertini I, Cowburn D, et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov. 2008;7:738–45.

    Article  PubMed  CAS  Google Scholar 

  2. Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl. 2003;42:864–90.

    Article  PubMed  CAS  Google Scholar 

  3. Markwick PR, Malliavin T, Nilges M. Structural biology by NMR: structure dynamics and interactions. PLoS Comput Biol. 2008;4:e1000168.

    Article  PubMed  Google Scholar 

  4. Tong W, Gagnon M, Sprules T, et al. Small-molecule ligands of GD2 ganglioside designed from NMR studies exhibit induced-fit binding and bioactivity. Chem Biol. 2010;17:183–94.

    Article  PubMed  CAS  Google Scholar 

  5. Modak S, Cheung NK. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Invest. 2007;25:67–77.

    Article  PubMed  CAS  Google Scholar 

  6. Hakomori S-I, Zhang Y. Glycosphingolipid antigens and cancer therapy. Chem Biol. 1997;4:97–104.

    Article  PubMed  CAS  Google Scholar 

  7. Birklé S, Zeng G, Gao L, et al. Role of tumor-associated gangliosides in cancer progression. Biochimie. 2003;85:455–63.

    Article  PubMed  Google Scholar 

  8. Jayalakshmi V, Krishna NR. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J Magn Reson. 2002;155:106–18.

    Article  PubMed  CAS  Google Scholar 

  9. Saragovi HU, Greene MI, Chrusciel RA, Kahn M. Loops and secondary structure mimetics: development and applications in basic science and rational drug design. Biotechnol (N Y). 1992;10:773–8.

    Article  CAS  Google Scholar 

  10. Sonnino S, Cantù L, Corti M, et al. Aggregative properties of gangliosides in solution. Chem Phys Lipids. 1994;71:21–45.

    Article  PubMed  CAS  Google Scholar 

  11. Yan J, Kline AD, Mo H, et al. The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J Magn Reson. 2003;163:270–6.

    Article  PubMed  CAS  Google Scholar 

  12. Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006;25:247–60.

    Article  PubMed  Google Scholar 

  13. Case DA, Cheatham 3rd TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–88.

    Article  PubMed  CAS  Google Scholar 

  14. Rieping W, Habeck M, Bardiaux B, et al. ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics. 2007;23:381–2.

    Article  PubMed  CAS  Google Scholar 

  15. Feig M, Karanicolas J, Brooks CL. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model. 2004;22:377–95.

    Article  PubMed  CAS  Google Scholar 

  16. Delaglio F, Grezesiek S, Vuister GW, et al. NMRpipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93.

    Article  PubMed  CAS  Google Scholar 

  17. Houliston RS, Yuki N, Hirama T, et al. Recognition characteristics of monoclonal antibodies that are cross-reactive with gangliosides and lipooligosaccharide from Campylobacter jejuni strains associated with Guillain-Barre and Fisher syndromes. Biochemistry. 2007;46:36–44.

    Article  PubMed  CAS  Google Scholar 

  18. Bernatchez S, Szymanski CM, Ishiyama N, et al. A single bifunctional UDP-GlcNAc/Glc 4-Epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem. 2005;280:4792–802.

    Article  PubMed  CAS  Google Scholar 

  19. Blixt O, Vasiliu D, Allin K, et al. Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res. 2005;340:1963–72.

    Article  PubMed  CAS  Google Scholar 

  20. Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123:6108–17.

    Article  PubMed  CAS  Google Scholar 

  21. Siebert HC, Reuter G, Schauer R, et al. Solution conformations of GM3 ganglioside containing different sialic acid residues as revealed by NOE-based distance mapping molecular mechanics and molecular dynamics calculations. Biochemistry. 1992;31:6962–71.

    Article  PubMed  CAS  Google Scholar 

  22. Jakalian A, Jack DB, Bayly CI. Fast efficient generation of high-quality atomic charges AM1-BCC model: II Parameterization and validation. J Comput Chem. 2002;23:1623–41.

    Article  PubMed  CAS  Google Scholar 

  23. Naim M, Bhat S, Rankin KN, et al. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model. 2007;47:122–33.

    Article  PubMed  Google Scholar 

  24. Coley AM, Parisi K, Masciantonio R, et al. The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infect Immun. 2006;74:2628–36.

    Article  PubMed  CAS  Google Scholar 

  25. Muller R, Debler EW, Steinmann M, et al. Bifunctional catalysis of proton transfer at an antibody active site. J Am Chem Soc. 2007;129:460–1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Uri Saragovi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tong, W., Sprules, T., Gehring, K., Saragovi, H.U. (2012). Rational Design of Peptide Ligands Against a Glycolipid by NMR Studies. In: Zheng, Y. (eds) Rational Drug Design. Methods in Molecular Biology, vol 928. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-008-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-008-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-007-6

  • Online ISBN: 978-1-62703-008-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics