Skip to main content

Synthesis, Conjugation, and Labeling of Multifunctional pRNA Nanoparticles for Specific Delivery of siRNA, Drugs, and Other Therapeutics to Target Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 928))

Abstract

RNA is unique in nanoscale fabrication due to its amazing diversity of function and structure. RNA nanoparticles can be fabricated with a level of simplicity characteristic of DNA while possessing versatile tertiary structure and catalytic function similar to that of proteins. A large variety of single stranded loops are suitable for inter- and intramolecular interactions, serving as mounting dovetails in self-assembly without the need for external linking dowels. Novel properties of RNA nanoparticles have been explored for treatment and detection of diseases and various other realms. The higher thermodynamic stability, holding of noncanonical base pairing, stronger folding due to base stacking properties, and distinctive in vivo attributes make RNA unique in comparison to DNA. Indeed, the potential application of RNA nanotechnology in therapeutics is an exciting area of research.

The use of RNAi in biomedical research has opened up new possibilities to silence or regulate the biological function of individual genes. Small interfering RNA (siRNA) has been extensively explored to genetically manipulate the expression in vitro and in vivo of particular genes identified to play a key role in cancerous or viral diseases. However, the efficient silencing of the desired gene depends upon efficient delivery of siRNA to targeted cells, as well as in vivo stability. In this chapter, we use the bacteriophage phi29 motor pRNA-derived nanocarrier as a polyvalent targeted delivery system, introduce the potential of RNA-based therapeutics using nanobiotechnology or nanotechnology methods with the fabrication and modification of pRNA nanoparticles, and highlight its potential to become a valuable research tool and viable clinical approach for gene therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Niemeyer CM (2002) The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol 20:395–401

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt OG, Eberl K (2001) Nanotechnology. Thin solid films roll up into nanotubes. Nature 410:168

    Article  PubMed  CAS  Google Scholar 

  3. Guo P (2005) RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J Nanosci Nanotechnol 5:1964–1982

    Article  PubMed  CAS  Google Scholar 

  4. Guo P, Zhang C, Chen C, Trottier M, Garver K (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155

    Article  PubMed  CAS  Google Scholar 

  5. Zhang F, Lemieux S, Wu X, St.-Arnaud S, McMurray CT, Major F, Anderson D (1998) Function of hexameric RNA in packaging of bacteriophage phi29 DNA in vitro. Mol Cell 2:141–147

    Article  PubMed  CAS  Google Scholar 

  6. Shu D, Moll WD, Deng Z, Mao C, Guo P (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett 4:1717–1723

    Article  PubMed  CAS  Google Scholar 

  7. Jaeger L, Leontis NB (2000) Tecto-RNA: one dimensional self-assembly through tertiary interactions. Angew Chem Int Ed Engl 39:2521–2524

    Article  PubMed  CAS  Google Scholar 

  8. Hansma HG, Oroudjev E, Baudrey S, Jaeger L (2003) TectoRNA and ‘kissing-loop’ RNA: atomic force microscopy of self-assembling RNA structures. J Microsc 212:273–279

    Article  PubMed  CAS  Google Scholar 

  9. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Article  PubMed  CAS  Google Scholar 

  10. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  PubMed  CAS  Google Scholar 

  11. Cech TR, Tanner NK, Tinoco I, Weir BR, Zuker M, Perlman PS (1983) Secondary structure of the tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences. Proc Natl Acad Sci USA 80:3903–3907

    Article  PubMed  CAS  Google Scholar 

  12. Zaug AJ, Grabowski PJ, Cech TR (1983) Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature 301:578–583

    Article  PubMed  CAS  Google Scholar 

  13. Hoeprich S, Zhou Q, Guo S, Qi G, Wang Y, Guo P (2003) Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther 10:1258–1267

    Article  PubMed  CAS  Google Scholar 

  14. Liu H, Guo S, Roll R, Li J, Diao Z, Shao N, Riley MR, Cole AM, Robinson JP, Snead NM, Shen G, Guo P (2007) Phi29 pRNA vector for efficient escort of hammerhead ribozyme targeting survivin in multiple cancer cells. Cancer Biol Ther 6:697–704

    Article  PubMed  CAS  Google Scholar 

  15. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  PubMed  CAS  Google Scholar 

  16. Bouvet P (2001) Determination of nucleic acid recognition sequences by SELEX. Methods Mol Biol 148:603–610

    PubMed  CAS  Google Scholar 

  17. Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1:538–550

    PubMed  CAS  Google Scholar 

  18. Clark S, Remcho V (2002) Aptamers as analytical reagents. Electrophoresis 23:1335–1340

    Article  PubMed  CAS  Google Scholar 

  19. Kraus E, James W, Barclay AN (1998) Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J Immunol 160:5209–5212

    PubMed  CAS  Google Scholar 

  20. Shu D, Guo P (2003) A viral RNA that binds ATP and contains an motif similar to an ATP-binding aptamer from SELEX. J Biol Chem 278:7119–7125

    Article  PubMed  CAS  Google Scholar 

  21. Gold L (1995) The SELEX process: a surprising source of therapeutic and diagnostic compounds. Harvey Lect 91:47–57

    PubMed  Google Scholar 

  22. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  23. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA ploymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  24. Khaled A, Guo S, Li F, Guo P (2005) Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett 5:1797–1808

    Article  PubMed  CAS  Google Scholar 

  25. McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  PubMed  CAS  Google Scholar 

  26. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  PubMed  CAS  Google Scholar 

  27. Zhou J, Swiderski P, Li H, Zhang J, Neff CP, Akkina R, Rossi JJ (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37:3094–3109

    Article  PubMed  CAS  Google Scholar 

  28. Zhou J, Li H, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    Article  PubMed  CAS  Google Scholar 

  29. Cerchia L, de Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Article  PubMed  CAS  Google Scholar 

  30. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  31. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  32. Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, Shu Y (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62:650–666

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    Article  PubMed  CAS  Google Scholar 

  34. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  35. Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438

    Article  PubMed  CAS  Google Scholar 

  36. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  PubMed  CAS  Google Scholar 

  37. Carmichael GG (2002) Medicine: silencing viruses with RNA. Nature 418:379–380

    Article  PubMed  CAS  Google Scholar 

  38. Sarver NA, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247:1222–1225

    Article  PubMed  CAS  Google Scholar 

  39. Chowrira BM, Berzal-Herranz A, Burke JM (1991) Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354:320–322

    Article  PubMed  CAS  Google Scholar 

  40. Forster AC, Symons RH (1987) Self-cleavage of virusoid RNA is performed by the proposed 55- nucleotide active site. Cell 50:9–16

    Article  PubMed  CAS  Google Scholar 

  41. Nava Sarver N, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 24:1222–1225

    Article  Google Scholar 

  42. Guo S, Huang F, Guo P (2006) Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther 13:814–820

    Article  PubMed  CAS  Google Scholar 

  43. Coleman J, Hirashima A, Inocuchi Y, Green PJ, Inouye M (1985) A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature 315:601–603

    Article  PubMed  CAS  Google Scholar 

  44. Knecht DA, Loomis WF (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236:1081–1086

    Article  PubMed  CAS  Google Scholar 

  45. Liu J, Guo S, Cinier M, Shlyakhtenko L, Shu Y, Chen C, Shen G, Guo P (2010) Fabrication of stable and RNase—resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5:237–246

    Article  PubMed  Google Scholar 

  46. Shu Y, Cinier M, Shu D, Guo P (2011) Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54(2):204–214

    Article  PubMed  CAS  Google Scholar 

  47. Abdelmawla S, Guo S, Zhang L, Pulukuri S, Patankar P, Conley P, Trebley J, Guo P, Li QX (2011) Pharmacological characterization of chemically synthesized monomeric pRNA nanoparticles for systemic delivery. Mol Ther 19(7):1312–1322

    Article  PubMed  CAS  Google Scholar 

  48. Shu Y, Cinier M, Fox SR, Ben-Johnathan N, Guo P (2011) Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Mol Ther 19(7):1304

    Article  PubMed  CAS  Google Scholar 

  49. Guo P, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 236:690–694

    Article  PubMed  CAS  Google Scholar 

  50. Shu D, Zhang H, Jin J, Guo P (2007) Counting of six pRNAs of phi29 DNA-packaging motor with customized single molecule dual-view system. EMBO J 26:527–537

    Article  PubMed  CAS  Google Scholar 

  51. Chen C, Zhang C, Guo P (1999) Sequence requirement for hand-in-hand interaction in formation of pRNA dimers and hexamers to gear phi29 DNA translocation motor. RNA 5:805–818

    Article  PubMed  CAS  Google Scholar 

  52. Guo S, Tschammer N, Mohammed S, Guo P (2005) Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109

    Article  PubMed  CAS  Google Scholar 

  53. Glotzer SC (2004) Materials science. Some assembly required. Science 306:419–420

    Article  PubMed  CAS  Google Scholar 

  54. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  PubMed  CAS  Google Scholar 

  55. Tarapore P, Shu Y, Guo P, Ho SM (2010) Application of Phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol Ther 19:386–394

    Article  PubMed  Google Scholar 

  56. Zhang HM, Su Y, Guo S, Yuan J, Lim T, Liu J, Guo P, Yang D (2009) Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res 83:307–316

    Article  PubMed  CAS  Google Scholar 

  57. Shu Y, Shu D, Diao Z, Shen G, Guo P (2009) Fabrication of polyvalent therapeutic RNA nanoparticles for specific delivery of siRNA, ribozyme and drugs to targeted cells for cancer therapy. IEEE/NIH Life Science Systems and Applications Workshop, pp 9–12

    Google Scholar 

  58. Rusckowski M, Qu T, Roskey A, Agrawal S (2000) Biodistribution and metabolism of a mixed backbone oligonucleotide (GEM 231) following single and multiple dose administration in mice. Antisense Nucleic Acid Drug Dev 10:333–345

    Article  PubMed  CAS  Google Scholar 

  59. Kawasaki AM, Casper MD, Freier SM, Lesnik EA, Zounes MC, Cummins LL, Gonzalez C, Cook PD (1993) Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 36:831–841

    Article  PubMed  CAS  Google Scholar 

  60. Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317

    Article  PubMed  CAS  Google Scholar 

  61. Jaeger L, Verzemnieks EJ, Geary C (2009) The UA_handle: a versatile submotif in stable RNA architectures. Nucleic Acids Res 37:215–230

    Article  PubMed  CAS  Google Scholar 

  62. Huang Y, Eckstein F, Padilla R, Sousa R (1997) Mechanism of ribose 2′-group discrimination by an RNA polymerase. Biochemistry 36:8231–8242

    Article  PubMed  CAS  Google Scholar 

  63. Padilla R, Sousa R (1999) Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res 27:1561–1563

    Article  PubMed  CAS  Google Scholar 

  64. Sousa R, Padilla R (1995) A mutant T7 RNA polymerase as a DNA polymerase. EMBO J 14:4609–4621

    PubMed  CAS  Google Scholar 

  65. Padilla R, Sousa R (2002) A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Res 30:e138

    Article  PubMed  Google Scholar 

  66. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  PubMed  CAS  Google Scholar 

  67. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105

    Article  PubMed  CAS  Google Scholar 

  68. Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    Article  PubMed  CAS  Google Scholar 

  69. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  PubMed  CAS  Google Scholar 

  70. Huang F, Wang G, Coleman T, Li N (2003) Synthesis of adenosine derivatives as transcription initiators and preparation of 5′ fluorescein- and biotin-labeled RNA through one-step in vitro transcription. RNA 9:1562–1570

    Article  PubMed  CAS  Google Scholar 

  71. Li N, Yu C, Huang F (2005) Novel cyanine-AMP conjugates for efficient 5′ RNA fluorescent labeling by one-step transcription and replacement of [gamma-32P]ATP in RNA structural investigation. Nucleic Acids Res 33:e37

    Article  PubMed  Google Scholar 

  72. Huang F, He J, Zhang Y, Guo Y (2008) Synthesis of biotin-AMP conjugate for 5′ biotin labeling of RNA through one-step in vitro transcription. Nat Protoc 3:1848–1861

    Article  PubMed  CAS  Google Scholar 

  73. Shu D, Zhang H, Petrenko R, Meller J, Guo P (2010) Dual-channel single-molecule fluorescence resonance energy transfer to establish distance parameters for RNA nanoparticles. ACS Nano 4:6843–6853

    Article  PubMed  CAS  Google Scholar 

  74. Zhang CL, Trottier M, Guo PX (1995) Circularly permuted viral pRNA active and specific in the packaging of bacteriophage f29 DNA. Virology 207:442–451

    Article  PubMed  CAS  Google Scholar 

  75. Zhang CL, Lee C-S, Guo P (1994) The proximate 5′ and 3′ ends of the 120-base viral RNA (pRNA) are crucial for the packaging of bacteriophage f29 DNA. Virology 201:77–85

    Article  PubMed  CAS  Google Scholar 

  76. Zhang L, Sun L, Cui Z, Gottlieb RL, Zhang B (2001) 5′-sulfhydryl-modified RNA: initiator synthesis, in vitro transcription, and enzymatic incorporation. Bioconjug Chem 12:939–948

    Article  PubMed  CAS  Google Scholar 

  77. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  CAS  Google Scholar 

  78. Bruce AG, Uhlenbeck OC (1978) Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res 5:3665–3677

    Article  PubMed  CAS  Google Scholar 

  79. Garver K, Guo P (2000) Mapping the inter-RNA interaction of phage phi29 by site-specific photoaffinity crosslinking. J Biol Chem 275:2817–2824

    Article  PubMed  CAS  Google Scholar 

  80. Huang F (2003) Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res 31:e8

    Article  PubMed  Google Scholar 

  81. Pan T, Gutell RR, Uhlenbeck OC (1991) Folding of circularly permuted transfer RNAs. Science 254:1361–1364

    Article  PubMed  CAS  Google Scholar 

  82. Nolan JM, Burke DH, Pace NR (1993) Circularly Permuted tRNAs as Specific Photoaffinity Probes of Ribonuclease P RNA Structure. Science 261:762–765

    Article  PubMed  CAS  Google Scholar 

  83. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-­nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  84. Chen C, Guo P (1997) Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol 71:495–500

    PubMed  CAS  Google Scholar 

  85. Wassarman DA (1993) Psoralen crosslinking of small RNAs in vitro. Mol Biol Rep 17:143–151

    Article  PubMed  CAS  Google Scholar 

  86. Tyc K, Steitz JA (1992) A new interaction between the mouse 5′ external transcribed spacer of pre-rRNA and U3 snRNA detected by psoralen crosslinking. Nucleic Acids Res 20:5375–5382

    Article  PubMed  CAS  Google Scholar 

  87. Hui CF, Cantor CR (1985) Mapping the location of psoralen crosslinks on RNA by mung bean nuclease sensitivity of RNA-DNA hybrids. Proc Natl Acad Sci USA 82:1381–1385

    Article  PubMed  CAS  Google Scholar 

  88. Shu D, Huang L, Hoeprich S, Guo P (2003) Construction of phi29 DNA-packaging RNA (pRNA) monomers, dimers and trimers with variable sizes and shapes as potential parts for nano-devices. J Nanosci Nanotechnol 3:295–302

    Article  PubMed  CAS  Google Scholar 

  89. Chen C, Sheng S, Shao Z, Guo P (2000) A dimer as a building block in assembling RNA: a hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem 275:17510–17516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants EB003730, GM059944, and CA151648. We also thank Dr. Randall Reif for helpful discussion and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Cinier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guo, P., Shu, Y., Binzel, D., Cinier, M. (2012). Synthesis, Conjugation, and Labeling of Multifunctional pRNA Nanoparticles for Specific Delivery of siRNA, Drugs, and Other Therapeutics to Target Cells. In: Zheng, Y. (eds) Rational Drug Design. Methods in Molecular Biology, vol 928. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-008-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-008-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-007-6

  • Online ISBN: 978-1-62703-008-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics