Skip to main content

Deriving TC50 Values of Nanoparticles from Electrochemical Monitoring of Lactate Dehydrogenase Activity Indirectly

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 926))

  • 3950 Accesses

Abstract

Nanotoxicity assessment methods for nanoparticles (NPs) such as carbon nanotubes (CNTs), nano-Al2O3, and tridecameric aluminum polycation or nanopolynuclear (nano-Al13), particularly lactate dehydrogenase (LDH) assays are reviewed. Our researches on electrochemically monitoring the variations of LDH activity indirectly in the presence of multiwalled carbon nanotubes (MWCNTs), nano-Al13, and nano-Al2O3 separately to derive toxic concentrations of NPs altering LDH activity by 50% (TC50) values are discussed. TC50 values indicated that the toxicity order was Al (III)> MWCNTs > nano-Al13 > nano-Al2O3. Zeta potentials (ΞΆ) data of these NPs in the literature proved that the surfaces of these NPs are charged negatively. Negatively charged surfaces might be a main cause in the reduction of LDH activity. Therefore, the classic LDH assays are doubtful to underestimate the nanotoxicities when they are applied to those NPs with negatively charged surfaces. These observations highlight and reconcile some contradictory results at present such as medium-dependent toxicity of NPs among the literature and develop novel analytical methods for evaluation of toxicities of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bi SP, Zhang J, Cheng JJ (2009) Call from China for joint nanotech toxicity-testing effort. Nature 461:593

    PubMedΒ  CASΒ  Google ScholarΒ 

  2. Huang XL, Teng X, Chen D, Tang FQ, He JQ (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448

    PubMedΒ  CASΒ  Google ScholarΒ 

  3. Jonaitis TS, Card JW, Magnuson B (2010) Concerns regarding nano-sized titanium dioxide dermal penetration and toxicity study. Toxicol Lett 192:268–269

    PubMedΒ  CASΒ  Google ScholarΒ 

  4. Bhardwaj V, Ankola DD, Gupta SC, Schneider M, Lehr CM, Kumar MNVR (2009) PLGA nanoparticles stabilized with cationic surfactant: safetystudies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat. Pharm Res 26:2495–2503

    PubMedΒ  CASΒ  Google ScholarΒ 

  5. Pastorin G (2009) Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res 26:746–769

    PubMedΒ  CASΒ  Google ScholarΒ 

  6. Azarmi S, Roa WH, Lobenberg R (2008) Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 60:863–875

    PubMedΒ  CASΒ  Google ScholarΒ 

  7. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    PubMedΒ  CASΒ  Google ScholarΒ 

  8. Heller DA, Jin H, Martinez BM, Patel D, Miller BM, Yeung TK, Jena PV, Hoebartner C, Ha T, Silverman SK, Strano MS (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120

    PubMedΒ  CASΒ  Google ScholarΒ 

  9. Krauss TD (2009) Nanotubes light up cells. Nat Nanotechnol 4:85–86

    PubMedΒ  CASΒ  Google ScholarΒ 

  10. Cheng JJ, Huang DQ, Zhang J, Yang WJ, Wang N, Sun YB, Wang KY, Mo XY, Bi SP (2009) Electrochemical behavior of lactate dehydrogenase immobilized on β€œsilica sol–gel/nanometre-sized tridecameric aluminium polycation” modified gold electrode and its application. Analyst 134:1392–1395

    PubMedΒ  CASΒ  Google ScholarΒ 

  11. Plashnitsa VV, Elumalai P, Fujio Y, Miura N (2008) Sensing performances of zirconia-based NH3 sensor utilizing nano-Au sensing electrode. Chem Sensors 24:124–126

    CASΒ  Google ScholarΒ 

  12. Liao YH, Yuan R, Chai YQ, Zhuo Y, Yang X (2010) Study on an amperometric immunosensor based on Nafion-cysteine composite membrane for detection of carcinoembryonic antigen. Anal Biochem 402:47–53

    PubMedΒ  CASΒ  Google ScholarΒ 

  13. Su HL, Yuan R, Chai YQ, Zhuo Y, Hong CL, Liu ZY, Yang X (2009) Multilayer structured amperometric immunosensor built by self-assembly of a redox multi-wall carbon nanotube composite. Electrochim Acta 54:4149–4154

    CASΒ  Google ScholarΒ 

  14. Sharma MK, Rao VK, Agarwal GS, Rai GP, Gopalan N, Prakash S, Sharma SK, Vijayaraghavan R (2008) Highly sensitive amperometric immunosensor for detection of Plasmodium falciparum histidine-rich protein in serum of humans with malaria: comparison with a commercial kit. J Clin Microbiol 46:3759–3765

    PubMedΒ  CASΒ  Google ScholarΒ 

  15. Lin JH, Zhang LJ, Zhang SS (2007) Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode. Anal Biochem 370:180–185

    PubMedΒ  CASΒ  Google ScholarΒ 

  16. Lin ZY, Huang LZ, Liu Y, Lin JM, Chi YW, Chen GN (2008) Electrochemiluminescent biosensor based on multi-wall carbon nanotube/nano-Au modified electrode. Electrochem Commun 10:1708–1711

    CASΒ  Google ScholarΒ 

  17. Cheng JJ, Di JW, Hong JH, Yao KA, Sun YB, Zhuang JY, Xu Q, Zheng H, Bi SP (2008) The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol–gel modified gold electrode. Talanta 76:1065–1069

    PubMedΒ  CASΒ  Google ScholarΒ 

  18. Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, Castranova V, Koyama S, Kim YA, Endo M, Simeonova PP (2009) Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. potential biomarkers. Nano Lett 9:36–43

    PubMedΒ  CASΒ  Google ScholarΒ 

  19. Wang XG, Kawanami H, Dapurkar SE, Venkataramanan NS, Chatterjee M, Yokoyama T, Ikushima Y (2008) Selective oxidation of alcohols to aldehydes and ketones over TiO2-supported gold nanoparticles in supercritical carbon dioxide with molecular oxygen. Appl Catal A 349:86–90

    CASΒ  Google ScholarΒ 

  20. Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3–17

    PubMedΒ  CASΒ  Google ScholarΒ 

  21. Singh S, Nalwa HS (2007) Nanotechnology and health safety – toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol 7:3048–3070

    PubMedΒ  CASΒ  Google ScholarΒ 

  22. Duan YM, Liu J, Ma LL, Li N, Liu HT, Wang J, Zheng L, Liu C, Wang XF, Zhao XY, Yan JY, Wang SS, Wang H, Zhang XG, Hong FS (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31:894–899

    PubMedΒ  CASΒ  Google ScholarΒ 

  23. Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63–88

    PubMedΒ  CASΒ  Google ScholarΒ 

  24. Kim KT, Klaine SJ, Lin S, Ke PC, Kim SD (2010) Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environ Toxicol Chem 29:122–126

    PubMedΒ  CASΒ  Google ScholarΒ 

  25. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    PubMedΒ  CASΒ  Google ScholarΒ 

  26. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P (2009) Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30:702–711

    PubMedΒ  CASΒ  Google ScholarΒ 

  27. Deng XY, Wu F, Liu Z, Luo M, Li L, Ni QS, Wu MH, Liu YF (2009) The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47:1421–1428

    CASΒ  Google ScholarΒ 

  28. Elder A (2009) How do nanotubes suppress T cells? Nat Nanotechnol 4:409–410

    PubMedΒ  CASΒ  Google ScholarΒ 

  29. Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP (2009) Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol Appl Pharmacol 236:319–328

    PubMedΒ  CASΒ  Google ScholarΒ 

  30. Yu YM, Zhang Q, Mu QX, Zhang B, Yan B (2008) Exploring the immunotoxicity of carbon nanotubes. Nanoscale Res Lett 3:271–277

    PubMedΒ  CASΒ  Google ScholarΒ 

  31. Elgrabli D, Floriani M, Abella-Gallart S, Meunier L, Gamez C, Delalain P, Rogerieux F, Boczkowski J, Lacroix G (2008) Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol 5:1–13

    Google ScholarΒ 

  32. Grainger DW (2009) Nanotoxicity assessment: all small talk? Adv Drug Deliv Rev 61:419–421

    PubMedΒ  CASΒ  Google ScholarΒ 

  33. Jos A, Pichardo S, Puerto M, Sanchez E, Grilo A, Camean AM (2009) Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro 23:1491–1496

    PubMedΒ  CASΒ  Google ScholarΒ 

  34. Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G (2008) Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253:131–136

    PubMedΒ  CASΒ  Google ScholarΒ 

  35. Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078

    CASΒ  Google ScholarΒ 

  36. Woerle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did It again! carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268

    CASΒ  Google ScholarΒ 

  37. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:1–12

    Google ScholarΒ 

  38. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235

    PubMedΒ  CASΒ  Google ScholarΒ 

  39. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    PubMedΒ  CASΒ  Google ScholarΒ 

  40. Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis confirms the interactions between single-walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432

    CASΒ  Google ScholarΒ 

  41. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438–448

    PubMedΒ  CASΒ  Google ScholarΒ 

  42. Weyermann J, Lochmann D, Zimmer A (2005) A practical note on the use of cytotoxicity assays. J Intern Med 288:369–376

    CASΒ  Google ScholarΒ 

  43. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    PubMedΒ  CASΒ  Google ScholarΒ 

  44. Shvedova AA, Kagan VE (2009) The role of nanotoxicology in realizing the β€˜helping without harm’ paradigm of nanomedicine: lessons from studies of pulmonary effects of single-walled carbon nanotubes. J Intern Med 267:106–118

    Google ScholarΒ 

  45. Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, Castranova V (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther 121:192–204

    PubMedΒ  CASΒ  Google ScholarΒ 

  46. Oberdorster G (2009) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105

    Google ScholarΒ 

  47. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1:313–316

    PubMedΒ  CASΒ  Google ScholarΒ 

  48. Chan VSW (2006) Nanomedicine: an unresolved regulatory issue. Regul Toxicol Pharmacol 46:218–224

    PubMedΒ  CASΒ  Google ScholarΒ 

  49. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    PubMedΒ  CASΒ  Google ScholarΒ 

  50. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, Part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    PubMedΒ  CASΒ  Google ScholarΒ 

  51. Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46

    PubMedΒ  CASΒ  Google ScholarΒ 

  52. Wang N, Huang DQ, Zhang J, Cheng JJ, Yu T, Zhang HQ, Bi SP (2008) Electrochemical studies on the effects of nanometer-sized tridecameric aluminum polycation on lactate dehydrogenase activity at the molecular level. J Phys Chem C 112:18034–18038

    CASΒ  Google ScholarΒ 

  53. Yao KA, Huang DQ, Xu BL, Wang N, Wang YJ, Bi SP (2010) A sensitive electrochemical approach for monitoring the effects of nano-Al2O3 on LDH activity by differential pulse voltammetry. Analyst 135:116–120

    PubMedΒ  CASΒ  Google ScholarΒ 

  54. McClendon S, Zhadin N, Callender R (2005) The approach to the Michaelis complex in lactate dehydrogenase: the substrate binding pathway. Biophys J 89:2024–2032

    PubMedΒ  CASΒ  Google ScholarΒ 

  55. Gulotta M, Deng H, Deng H, Dyer RB, Callender RH (2002) Toward an understanding of the role of dynamics on enzymic catalysis in lactate dehydrogenase. Biochemistry 41:3353–3363

    PubMedΒ  CASΒ  Google ScholarΒ 

  56. Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA Jr (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–1941

    PubMedΒ  CASΒ  Google ScholarΒ 

  57. Moraru V, Lebovka N, Shevchenko D (2004) Structural transitions in aqueous suspensions of natural graphite. Colloids Surf A 242:181–187

    CASΒ  Google ScholarΒ 

  58. Brant J, Lecoanet H, Hotze M, Wiesner M (2005) Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ Sci Technol 39:6343–6351

    PubMedΒ  CASΒ  Google ScholarΒ 

  59. Kato H, Mizuno K, Shimada M, Nakamura A, Takahashi K, Hata K, Kinugasa S (2009) Observations of bound Tween 80 surfactant molecules on single-walled carbon nanotubes in an aqueous solution. Carbon 47:3434–3440

    CASΒ  Google ScholarΒ 

  60. Yu BZ, Yang JS, Li WX (2007) In vitro capability of multi-walled carbon nanotubes modified with gonadotrophin releasing hormone on killing cancer cells. Carbon 45:1921–1927

    CASΒ  Google ScholarΒ 

  61. Vitanov P, Harizanova A, Ivanova T, Dimitrova T (2009) Chemical deposition of Al2O3 thin films on Si substrates. Thin Solid Films 517:6327–6330

    CASΒ  Google ScholarΒ 

  62. Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G (2009) Multi-walled carbon nanotubes: lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 184:192–197

    PubMedΒ  Google ScholarΒ 

  63. Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    CASΒ  Google ScholarΒ 

  64. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429

    PubMedΒ  CASΒ  Google ScholarΒ 

  65. Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang JK, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    CASΒ  Google ScholarΒ 

  66. Karlsson HL, Cronholm P, Gustafsson J, Moeller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    PubMedΒ  CASΒ  Google ScholarΒ 

  67. Shen M, Wang SH, Shi X, Chen XS, Huang QG, Petersen EJ, Pinto RA, Baker JR, Weber WJ (2009) Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113:3150–3156

    CASΒ  Google ScholarΒ 

  68. Sayes CM, Reed KL, Subramoney S, Abrams L, Warheit DB (2009) Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials? J Nanopart Res 11:421–431

    CASΒ  Google ScholarΒ 

  69. Blaise C, Gagne F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598

    PubMedΒ  CASΒ  Google ScholarΒ 

  70. Zhu XS, Zhu L, Chen YS, Tian SY (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

    CASΒ  Google ScholarΒ 

  71. Zheng HZ, Liu L, Lu YH, Long YJ, Wang LL, Ho KP, Wong KY (2010) Rapid determination of nanotoxicity using luminous bacteria. Anal Sci 26:125–128

    PubMedΒ  CASΒ  Google ScholarΒ 

  72. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken AH (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    PubMedΒ  CASΒ  Google ScholarΒ 

  73. Olabarrieta I, L’Azou B, Yuric S, Cambar J, Cajaraville MP (2001) In vitro effects of cadmium on two different animal cell models. Toxicol In Vitro 15:511–517

    PubMedΒ  CASΒ  Google ScholarΒ 

  74. Li HC, Zhang JS, Wang T, Luo WR, Zhou QF, Jiang GB (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256

    PubMedΒ  CASΒ  Google ScholarΒ 

  75. Cook SM, Aker WG, Rasulev BF, Hwang HM, Leszczynski J, Jenkins JJ, Shockley V (2010) Choosing safe dispersing media for C60 fullerenes by using cytotoxicity tests on the bacterium Escherichia coli. J Hazard Mater 176:367–373

    PubMedΒ  CASΒ  Google ScholarΒ 

  76. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ (2004) Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 20:12–20

    PubMedΒ  CASΒ  Google ScholarΒ 

  77. Huang WH, Li YL, Wang H, Su MX, Jiang ZY, Ooi VEC, Chung HY (2009) Toxicological study of a Chinese herbal medicine, Wikstroemia indica. Nat Prod Commun 4:1227–1230

    PubMedΒ  CASΒ  Google ScholarΒ 

  78. Rahban M, Divsalar A, Saboury AA, Golestani A (2010) Nanotoxicity and spectroscopy studies of silver nanoparticle: calf thymus DNA and K562 as targets. J Phys Chem C 114:5798–5803

    CASΒ  Google ScholarΒ 

  79. Suttmann H, Retz M, Paulsen F, Harder J, Zwergel U, Kamradt J, Unteregger G, Stoeckle M, Lehmann J (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol 8:1–7

    Google ScholarΒ 

  80. L’Azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, Brochard P, Ohayon-Courtes C (2008) In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5:1–14

    Google ScholarΒ 

  81. Hu XK, Cook S, Wang P, Hwang HM (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072

    PubMedΒ  CASΒ  Google ScholarΒ 

  82. Khattak SF, Spatara M, Roberts L, Roberts SC (2006) Application of colorimetric assays to assess viability, growth and metabolism of hydrogel-encapsulated cells. Biotechnol Lett 28:1361–1370

    PubMedΒ  CASΒ  Google ScholarΒ 

  83. Lantto TA, Colucci M, Zavadova V, Hiltunen R, Raasmaja A (2009) Cytotoxicity of curcumin, resveratrol and plant extracts from basil, juniper, laurel and parsley in SH-SY5Y and CV1-P cells. Food Chem 117:405–411

    CASΒ  Google ScholarΒ 

  84. Lobo AO, Corat MAF, Antunes EF, Palma MBS, Pacheco-Soares C, Garcia EE, Corat EJ (2010) An evaluation of cell proliferation and adhesion on vertically-aligned multi-walled carbon nanotube films. Carbon 48:245–254

    CASΒ  Google ScholarΒ 

  85. Krieg AF, Rosenblum LJ, Henry JB (1967) Lactate dehydrogenase isoenzymes a comparison of pyruvate-to-lactate and lactate-to-pyruvate assays. Clin Chem 13:196–203

    PubMedΒ  CASΒ  Google ScholarΒ 

  86. Howell BF, McCune S, Schaffer R (1979) Lactate-to-pyruvate or pyruvate-to-lactate assay for lactate dehydrogenase: a re-examination. Clin Chem 25:269–272

    PubMedΒ  CASΒ  Google ScholarΒ 

  87. Gutheil WG (1998) A sensitive equilibrium-based assay for d-lactate using d-lactate dehydrogenase: application to penicillin-binding protein/dd-carboxypeptidase activity assays. Anal Biochem 259:62–67

    PubMedΒ  CASΒ  Google ScholarΒ 

  88. Larsen T (2005) Determination of lactate dehydrogenase (LDH) activity in milk by a fluorometric assay. J Dairy Res 72:209–216

    PubMedΒ  CASΒ  Google ScholarΒ 

  89. Zewe V, Fromm HJ (1965) Kinetic studies of rabbit muscle lactate dehydrogenase. II. Mechanism of the reaction. Biochemistry 4:782–792

    PubMedΒ  CASΒ  Google ScholarΒ 

  90. Klotzsch SG, Klotzsch HR, Haus M (1969) Inhibitor-contaminated NADH: its influence on dehydrogenases and dehydrogenase-coupled reactions. Clin Chem 15:1056–1061

    PubMedΒ  CASΒ  Google ScholarΒ 

  91. Lovell SJ, Winzor DJ (1974) Effects of phosphate on the dissociation and enzymic stability of rabbit muscle lactate dehydrogenase. Biochemistry 13:3527–3531

    PubMedΒ  CASΒ  Google ScholarΒ 

  92. Haid E, Lehmann P, Ziegenhorn J (1975) Molar absorptivities of beta-NADH and beta-NAD at 260 nm. Clin Chem 21:884–887

    PubMedΒ  CASΒ  Google ScholarΒ 

  93. Tomaszek TA Jr, Moore ML, Strickler JE, Sanchez RL, Dixon JS, Metcalf BW, Hassell A, Dreyer GB, Brooks I, Debouck C, Meek TD (1992) Proteolysis of an active site peptide of lactate dehydrogenase by human immunodeficiency virus type 1 protease. Biochemistry 31:10153–10168

    PubMedΒ  CASΒ  Google ScholarΒ 

  94. Arechabala B, Coiffard C, Rivalland P, Coiffard LJ, de Roeck-Holtzhauer Y (1999) Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test, MTT assay and LDH release. J Appl Toxicol 19:163–165

    PubMedΒ  CASΒ  Google ScholarΒ 

  95. Zhu WL, Ma SP, Qu R, Kang DL (2006) Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. Life Sci 79:749–756

    PubMedΒ  CASΒ  Google ScholarΒ 

  96. Li S, Wang C, Wang MW, Li W, Matsumoto K, Tang YY (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80:1373–1381

    PubMedΒ  CASΒ  Google ScholarΒ 

  97. Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, Raymundo-Pinero E, Beguin F, Kirsch-Volders M, Fenoglio I, Fubini B, Lison D (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21:1698–1705

    PubMedΒ  CASΒ  Google ScholarΒ 

  98. Yang H, Liu C, Yang DF, Zhang HH, Xi ZG (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    PubMedΒ  Google ScholarΒ 

  99. Zhao YF, Zhang N, Kong QZ (2006) Tetrazolium violet induces G0/G1 arrest and apoptosis in brain tumor cells. J Neurooncol 77:109–115

    PubMedΒ  CASΒ  Google ScholarΒ 

  100. Vaucher RA, Teixeira ML, Brandelli A (2010) Investigation of the cytotoxicity of antimicrobial peptide P40 on eukaryotic cells. Curr Microbiol 60:1–5

    PubMedΒ  CASΒ  Google ScholarΒ 

  101. Moran JH, Schnellmann RG (1996) A rapid beta-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death. J Pharmacol Toxicol Methods 36:41–44

    PubMedΒ  CASΒ  Google ScholarΒ 

  102. Liu YC, Gerber R, Wu J, Tsuruda T, McCarter JD (2008) High-throughput assays for sirtuin enzymes: a microfluidic mobility shift assay and a bioluminescence assay. Anal Biochem 378:53–59

    PubMedΒ  CASΒ  Google ScholarΒ 

  103. Allain CC, Henson CP, Nadel MK, Knoblesdorff AJ (1973) Rapid single-step kinetic colorimetric assay for lactate dehydrogenase in serum. Clin Chem 19:223–227

    PubMedΒ  CASΒ  Google ScholarΒ 

  104. Sepp A, Binns RM, Lechler RI (1996) Improved protocol for colorimetric detection of complement-mediated cytotoxicity based on the measurement of cytoplasmic lactate dehydrogenase activity. J Immunol Methods 196:175–180

    PubMedΒ  CASΒ  Google ScholarΒ 

  105. Wolterbeek HT, van der Meer, Astrid JGM (2005) Optimization, application, and interpretation of lactate dehydrogenase measurements in microwell determination of cell number and toxicity. Assay Drug Dev Technol 3:675–682

    Google ScholarΒ 

  106. Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L’Hermite M, Reynaud C, Cassio D, Gouget B, Carriere M (2010) Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12:61–73

    CASΒ  Google ScholarΒ 

  107. Lobo AO, Corat MAF, Antunes EF, Palma MBS, Pacheco-Soares C, Corat EJ (2009) Cytotoxicity analysis of vertically aligned multi-walled carbon nanotubes by colorimetric assays. Synth Met 159:2165–2166

    CASΒ  Google ScholarΒ 

  108. Yeh LK, Chen YH, Chiu CS, Hu FR, Young TH, Wang IJ (2009) The phenotype of bovine corneal epithelial cells on chitosan membrane. J Biomed Mater Res A 90A:18–26

    CASΒ  Google ScholarΒ 

  109. Chen X, Liu J, Gu XS, Ding F (2008) Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res 1238:189–198

    PubMedΒ  CASΒ  Google ScholarΒ 

  110. Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, Harder J, Unteregger G, Stoeckle M (2006) Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol 50:141–147

    PubMedΒ  CASΒ  Google ScholarΒ 

  111. De Juan BS, Von Briesen H, Gelperina SE, Kreuter J (2006) Cytotoxicity of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles in rat glioma cell lines using different assays. J Drug Target 14:614–622

    PubMedΒ  Google ScholarΒ 

  112. Bembenek ME, Kuhn E, Mallender WD, Pullen L, Li P, Parsons T (2005) A fluorescence-based coupling reaction for monitoring the activity of recombinant human NAD synthetase. Assay Drug Dev Technol 3:533–541

    PubMedΒ  CASΒ  Google ScholarΒ 

  113. Ivanova L, Uhlig S (2008) A bioassay for the simultaneous measurement of metabolic activity, membrane integrity, and lysosomal activity in cell cultures. Anal Biochem 379:16–19

    PubMedΒ  CASΒ  Google ScholarΒ 

  114. Abe K, Matsuki N (2000) Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 38:325–329

    PubMedΒ  CASΒ  Google ScholarΒ 

  115. Bartalits L, Nagy G, Pungor E (1984) Determination of enzyme activity in biological fluids by means of electrochemical oxidation of NADH at a modified glassy carbon electrode. Clin Chem 30:1780–1783

    PubMedΒ  CASΒ  Google ScholarΒ 

  116. Tarmure C, Sandulescu R, Ionescu C (2000) Voltammetric determination of lactate dehydrogenase using a carbon paste electrode. J Pharm Biomed Anal 22:355–361

    PubMedΒ  CASΒ  Google ScholarΒ 

  117. Eisenberg EJ, Cundy KC (1991) Amperometric high-performance liquid chromatographic detection of NADH at a base-activated glassy carbon electrode. Anal Chem 63:845–847

    CASΒ  Google ScholarΒ 

  118. Santos-Alvarez NDL, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2002) Amperometric determination of serum lactate dehydrogenase activity using an ADP-modified graphite electrode. Anal Chim Acta 457:275–284

    CASΒ  Google ScholarΒ 

  119. Nowall WB, Kuhr WG (1995) Electrocatalytic surface for the oxidation of NADH and other anionic molecules of biological significance. Anal Chem 67:3583–3588

    PubMedΒ  CASΒ  Google ScholarΒ 

  120. Di JW, Cheng JJ, Xu Q, Zheng H, Zhuang JY, Sun YB, Wang KY, Mo XY, Bi SP (2007) Direct electrochemistry of lactate dehydrogenase immobilized on silica sol–gel modified gold electrode and its application. Biosens Bioelectron 23:682–687

    PubMedΒ  CASΒ  Google ScholarΒ 

Download references

Acknowledgments

This project is supported by the NSFC (20975049), State Key Laboratory of Electrochemistry of China in Changchun Applied Chemistry Institute (2008008) and Analytical Center of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, F., Wang, N., Chang, F., Bi, S. (2012). Deriving TC50 Values of Nanoparticles from Electrochemical Monitoring of Lactate Dehydrogenase Activity Indirectly. In: Reineke, J. (eds) Nanotoxicity. Methods in Molecular Biology, vol 926. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-002-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-002-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-001-4

  • Online ISBN: 978-1-62703-002-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics