Skip to main content

Applications of Subsurface Microscopy

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 926))

Abstract

Exploring the interior of a cell is of tremendous importance in order to assess the effects of nanomaterials on biological systems. Outside of a controlled laboratory environment, nanomaterials will most likely not be conveniently labeled or tagged so that their translocation within a biological system cannot be easily identified and quantified. Ideally, the characterization of nanomaterials within a cell requires a nondestructive, label-free, and subsurface approach. Subsurface nanoscale imaging represents a real challenge for instrumentation. Indeed the tools available for high resolution characterization, including optical, electron or scanning probe microscopies, mainly provide topography images or require taggants that fluoresce. Although the intercellular environment holds a great deal of information, subsurface visualization remains a poorly explored area. Recently, it was discovered that by mechanically perturbing a sample, it was possible to observe its response in time with nanoscale resolution by probing the surface with a micro-resonator such as a microcantilever probe. Microcantilevers are used as the force-sensing probes in atomic force microscopy (AFM), where the nanometer-scale probe tip on the microcantilever interacts with the sample in a highly controlled manner to produce high-resolution raster-scanned information of the sample surface. Taking advantage of the existing capabilities of AFM, we present a novel technique, mode synthesizing atomic force microscopy (MSAFM), which has the ability to probe subsurface structures such as non-labeled nanoparticles embedded in a cell. In MSAFM mechanical actuators (PZTs) excite the probe and the sample at different frequencies as depicted in the first figure of this chapter. The nonlinear nature of the tip–sample interaction, at the point of contact of the probe and the surface of the sample, in the contact mode AFM configuration permits the mixing of the elastic waves. The new dynamic system comprises new synthesized imaging modes, resulting from sum- and difference-frequency generation of the driving frequencies. The specific electronics of MSAFM allows the selection of individual modes and the monitoring of their amplitude and phase. From these quantities of various synthesized modes a series of images can be acquired. The new images contain subsurface information, thus revealing the presence of nanoparticles inside the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan X, Tan J, Zhang G, Zhang F (2007) Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18:195103–195108

    Article  Google Scholar 

  2. Stone V, Donaldson K (2006) Nanotoxicology—signs of stress. Nat Nanotechnol 1:23–24

    Article  PubMed  CAS  Google Scholar 

  3. Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K (2009) Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. J Environ Monit 11:1782–1800

    Article  PubMed  CAS  Google Scholar 

  4. Strassert CA, Otter M, Albuquerque RQ, Hone A, Vida Y, Maier B, De Cola L (2009) Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria. Angew Chem Int Ed Engl 48:7928–7931

    Article  PubMed  CAS  Google Scholar 

  5. Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  PubMed  CAS  Google Scholar 

  6. Holsapple M, Farland W, Landry T, Monteiro-Riviere N, Carter J, Walker N, Thomas K (2005) Research strategies for safety evaluation of nanomaterials. Part II. Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88:12–17

    Article  PubMed  CAS  Google Scholar 

  7. Kreyling WG, Semmler-Behnke M, Moeller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562

    Article  CAS  Google Scholar 

  8. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    Article  PubMed  CAS  Google Scholar 

  9. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  10. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  11. Myllynen P (2009) Nanotoxicology: damaging DNA from a distance. Nat Nanotechnol 4:795–796

    Article  PubMed  CAS  Google Scholar 

  12. Dawson KA, Salvati A, Lynch I (2009) Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol 4:84–85

    Article  PubMed  CAS  Google Scholar 

  13. Donaldson K, Poland CA (2009) Nanotoxicology: new insights into nanotubes. Nat Nanotechnol 4:708–710

    Article  PubMed  CAS  Google Scholar 

  14. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  PubMed  CAS  Google Scholar 

  15. Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595

    Article  PubMed  CAS  Google Scholar 

  16. Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  PubMed  CAS  Google Scholar 

  17. Tetard L, Passian A, Farahi RH, Thundat T (2010) Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells. Ultramicroscopy 6:586–591

    Article  Google Scholar 

  18. Tetard L, Passian A, Lynch RM, Voy BH, Shekhawat G, Dravid VP, Thundat T (2008) Elastic phase response of silica nanoparticles buried in soft matter. Appl Phys Lett 93:133113

    Article  Google Scholar 

  19. Tetard L, Passian A, Venmar KT, Lynch RM, Voy BH, Shekhawat G, Dravid VP, Thundat T (2008) Imaging nanoparticles in cells by nanomechanical holography. Nat Nanotechnol 3:501–505

    Article  PubMed  CAS  Google Scholar 

  20. Tetard L, Passian A, Thundat T (2010) New modes for subsurface atomic force microscopy through nanomechanical coupling. Nat Nanotechnol 5:105–109

    Article  PubMed  CAS  Google Scholar 

  21. Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V (2003) Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(,-lactide-co-glycolide) nanoparticles. Int J Pharm 262:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  PubMed  CAS  Google Scholar 

  23. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  PubMed  Google Scholar 

  24. Worle-Knirsch J, Pulskamp K, Krug H (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268

    Article  PubMed  CAS  Google Scholar 

  25. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  PubMed  CAS  Google Scholar 

  26. Daniels HR, Brydson R, Brown A, Rand B (2003) Quantitative valence plasmon mapping in the TEM: viewing physical properties at the nanoscale. Ultramicroscopy 96:547–558

    Article  PubMed  CAS  Google Scholar 

  27. Lang HP, Gerber C (2009) Up close & personal with atoms & molecules. Mater Today 12:18–25

    Article  CAS  Google Scholar 

  28. Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ (2010) Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:618–634

    Article  PubMed  Google Scholar 

  29. Kim S, Kihm KD, Thundat T (2010) Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors. Exp Fluids 48:721–736

    Article  CAS  Google Scholar 

  30. Mao YD, Sun QM, Wang XF, Ouyang Q, Han L, Jiang L, Han D (2009) In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl Phys Lett 95(1):13704

    Article  Google Scholar 

  31. Garcia R, Margerle R, Perez R (2007) Nanoscale compositional mapping with gentle forces. Nat Mater 6:405–411

    Article  PubMed  CAS  Google Scholar 

  32. Chung J, Kim K, Hwang G, Kwon O, Lee JS, Park SH, Choi YK (2010) Nanoscale range finding of subsurface structures by measuring the absolute phase lag of thermal wave. Rev Sci Instrum 81(5):053701

    Article  PubMed  Google Scholar 

  33. Shekhawat G, Srivastava A, Avasthy S, Dravid V (2009) Ultrasound holography for noninvasive imaging of buried defects and interfaces for advanced interconnect architectures. Appl Phys Lett 95(26):263101

    Article  Google Scholar 

  34. Shekhawat GS, Avasthy S, Srivastava AK, Tark SH, Dravid VP (2010) Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE Trans Nanotechnol 9:671–674

    Article  Google Scholar 

  35. Valdes O, Cuberes MT (2009) Characterization of a new scaffold formed of polyelectrolyte complexes using atomic force and ultrasonic force microscopy. J Biomed Nanotechnol 5:716–721

    Article  PubMed  CAS  Google Scholar 

  36. Rabe U, Arnold W (1994) Acoustic microscopy by atomic force microscopy. Appl Phys Lett 64:1493–1495

    Article  Google Scholar 

  37. Kolosov OV, Martin RC, Marsh CD, Briggs GA, Kamins TI, Williams RS (1998) Imaging the elastic nanostructures of ge islands by ultrasonic force microscopy. Phys Rev Lett 81:1046

    Article  CAS  Google Scholar 

  38. Martinez NF, Patil S, Lozano JR, Garcia R (2006) Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes. Appl Phys Lett 89:153115

    Article  Google Scholar 

  39. Sahin O (2008) Scanning below the cell surface. Nat Nanotechnol 3:461–462

    Article  PubMed  CAS  Google Scholar 

  40. Lynch RM, Naswa S, Rogers GL, Kania SA, Das S, Chesler EJ, Saxton AM, Langston MA, Voy BH (2010) Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in BXD recombinant inbred mice. Physiol Genomics 41:244–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Oak Ridge National Laboratory (ORNL) Technology Maturation Fund. ORNL, Oak Ridge, Tennessee, 37831-6123, is managed by UT‚ Battelle, LLC for the Department of Energy under Contract No. DE-AC05-0096OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Passian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tetard, L., Passian, A., Farahi, R.H., Voy, B.H., Thundat, T. (2012). Applications of Subsurface Microscopy. In: Reineke, J. (eds) Nanotoxicity. Methods in Molecular Biology, vol 926. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-002-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-002-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-001-4

  • Online ISBN: 978-1-62703-002-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics