Skip to main content

In Vivo Methods of Nanotoxicology

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 926))

Abstract

The new field of nanotoxicology is steadily emerging in parallel with rapid advances made in nanotechnology to evaluate biological impact of intended and non-intended nanomaterial exposure over time as their human applications constantly increase. Over the last decade nanotoxicology methods have mostly relied on in vitro cell-based characterizations that do not account for the complexity of in vivo systems with respect to biodistribution, metabolism, hematology, immunology, and neurological ramifications. Comprehensive in vivo studies addressing the toxicity of nanoscale materials are scarce mainly because the field is still nascent. Efforts in standardizing methodology to study the in vivo safety of these materials are currently undertaken by various government agencies and research organizations. Here, we discuss the need for in vivo nanotoxicity studies, outline some of the important methods, and comment on practical considerations in carrying out such studies.

Khaled Greish and Giridhar Thiagarajan contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borm PJ, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles–potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531

    Article  PubMed  CAS  Google Scholar 

  2. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  3. Roco MC (2006) Nanotechnology’s future. Sci Am 295:39

    Article  PubMed  Google Scholar 

  4. Assay cascades—Nanotechnology Characterization Laboratory-Assay Cascades – http://ncl.gove/assay_cascade.asp, 2010

  5. Gormley AJ, Ghandehari H (2009) Evaluation of toxicity of nanostructures in biological systems. Wiley, Chichester

    Google Scholar 

  6. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377

    Article  PubMed  CAS  Google Scholar 

  7. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689

    Article  PubMed  CAS  Google Scholar 

  8. Holt DJ, Chamberlain LM, Grainger DW (2010) Cell-cell signaling in co-cultures of macrophages and fibroblasts. Biomaterials 31:9382–9394

    Article  PubMed  CAS  Google Scholar 

  9. Sayes C, Ivanov I (2010) Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal 30:1723–1734

    Article  PubMed  Google Scholar 

  10. Derelanko MJ, and Hollinger MA, Handbook of Toxicology, CRC Press, Boca Raton

    Google Scholar 

  11. Hodgson E (2004) Introduction to toxicology. Wiley, Hoboken

    Google Scholar 

  12. Stine KE, Brown TM (2006) Principles of toxicology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  13. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  Google Scholar 

  14. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  PubMed  CAS  Google Scholar 

  15. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253

    Article  PubMed  CAS  Google Scholar 

  16. Fiske MJ, Fredenburg RA, VanDerMeid KR, McMichael JC, Arumugham R (2001) Method for reducing endotoxin in Moraxella catarrhalis UspA2 protein preparations. J Chromatogr B Biomed Sci Appl 753:269–278

    Article  PubMed  CAS  Google Scholar 

  17. Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci 10:388–404

    PubMed  Google Scholar 

  18. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    Article  PubMed  CAS  Google Scholar 

  19. Griesh K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A, Ray A, Ghandehari H (2010) Size and surface charge significantly influence toxicity of silica and dendritic Nanotoxicology. 2011 Jul 28. [Epub ahead of print]

    Google Scholar 

  20. Dowell P, Robinson K, Greish K, Ghandehari H, Nan A (2010) In vivo evaluation of the effect of physicochemical properties of functionalized single-walled carbon nanotubes on acute toxicity and biodistribution (in press)

    Google Scholar 

  21. Hudson SP, Padera RF, Langer R, Kohane DS (2008) The biocompatibility of mesoporous silicates. Biomaterials 29:4045–4055

    Article  PubMed  CAS  Google Scholar 

  22. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  PubMed  CAS  Google Scholar 

  23. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Article  PubMed  CAS  Google Scholar 

  24. Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042

    Article  PubMed  CAS  Google Scholar 

  25. Leu D, Manthey B, Kreuter J, Speiser P, DeLuca PP (1984) Distribution and elimination of coated polymethyl (2-14C)methacrylate nanoparticles after intravenous injection in rats. J Pharm Sci 73:1433–1437

    Article  PubMed  CAS  Google Scholar 

  26. Troster SD, Kreuter J (1992) Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. J Microencapsul 9:19–28

    Article  PubMed  CAS  Google Scholar 

  27. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  PubMed  CAS  Google Scholar 

  28. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    Article  PubMed  CAS  Google Scholar 

  29. Line BR, Mitra A, Nan A, Ghandehari H (2005) Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. J Nucl Med 46:1552–1560

    PubMed  CAS  Google Scholar 

  30. Arnida, Janat-Amsbury MM, Ray A, Peterson CM, Ghandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77:417–423

    Article  PubMed  CAS  Google Scholar 

  31. Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  PubMed  CAS  Google Scholar 

  32. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  PubMed  CAS  Google Scholar 

  33. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  34. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  PubMed  CAS  Google Scholar 

  35. Schmid W (1975) The micronucleus test. Mutat Res 31:9–15

    Article  PubMed  CAS  Google Scholar 

  36. Sarto F, Finotto S, Giacomelli L, Mazzotti D, Tomanin R, Levis AG (1987) The micronucleus assay in exfoliated cells of the human buccal mucosa. Mutagenesis 2:11–17

    Article  PubMed  CAS  Google Scholar 

  37. The International Conference on Harmonisation of Technical Requirement of Registration of Pharmaceuticals for Human Use (ICH)

    Google Scholar 

  38. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  PubMed  CAS  Google Scholar 

  39. Saffiotti U, Page NP (1977) Releasing carcinogenesis test results: timing and extent of reporting. Med Pediatr Oncol 3:159–167

    Article  PubMed  CAS  Google Scholar 

  40. Lai Y, Chiang P-C, Blom J, Li N, Shevlin K, Brayman T, Hu Y, Selbo J, Hu L (2008) Comparison of in vitro nanoparticles uptake in various cell lines and in vivo pulmonary cellular transport in intratracheally dosed rat model. Nanoscale Res Lett 3:321–329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Alexander Malugin for valuable discussions on in vitro nanotoxicity assays. Financial support was provided by the National Institutes of Health (R01DE019050) and the Utah Science Technology and Research (USTAR) initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greish, K., Thiagarajan, G., Ghandehari, H. (2012). In Vivo Methods of Nanotoxicology. In: Reineke, J. (eds) Nanotoxicity. Methods in Molecular Biology, vol 926. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-002-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-002-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-001-4

  • Online ISBN: 978-1-62703-002-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics