Skip to main content

Immuno-Slot Blot Assay for Detection of UVR-Mediated DNA Damage

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

Solar ultraviolet radiation (UVR), through the formation of DNA photolesions, is the primary cause of most skin cancers. A better understanding of the mechanisms of UVR-induced DNA damage may help prevent skin cancer and this may be achieved using methods to quantify DNA damage. The immuno-slot blot (ISB) method is routinely used for detection and quantification of any heat- and alkali-stable DNA adducts for which a sufficiently specific monoclonal antibody is available. The main steps in ISB are fragmentation and denaturation of the DNA, immobilization of DNA to a nitrocellulose filter, incubation with primary antibody against a specific DNA adduct, incubation with an enzyme-linked secondary antibody and finally chemiluminescence detection and quantification of the DNA adducts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  PubMed  CAS  Google Scholar 

  2. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63:88–102

    Article  PubMed  CAS  Google Scholar 

  3. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17

    Article  PubMed  CAS  Google Scholar 

  4. Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226

    Article  PubMed  CAS  Google Scholar 

  5. Cooke MS, Duarte TL, Cooper D, Chen J, Nandagopal S, Evans MD (2008) Combination of azathioprine and UVA irradiation is a major source of cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine. DNA Repair (Amst) 7:1982–1989

    Article  CAS  Google Scholar 

  6. Cadet J, Berger M, Douki T, Ravanat JL (1997) Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 131:1–87

    PubMed  CAS  Google Scholar 

  7. Coohill TP, Peak MJ, Peak JG (1987) The effects of the ultraviolet wavelengths of radiation present in sunlight on human cells in vitro. Photochem Photobiol 46:1043–1050

    Article  PubMed  CAS  Google Scholar 

  8. Douki T, Perdiz D, Grof P, Kuluncsics Z, Moustacchi E, Cadet J, Sage E (1999) Oxidation of guanine in cellular DNA by solar UV radiation: biological role. Photochem Photobiol 70:184–190

    Article  PubMed  CAS  Google Scholar 

  9. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770

    Article  PubMed  CAS  Google Scholar 

  10. Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18:2379–2384

    Article  PubMed  CAS  Google Scholar 

  11. Tyrrell RM, Reeve VE (2006) Potential protection of skin by acute UVA irradiation – from cellular to animal models. Prog Biophys Mol Biol 92:86–91

    Article  PubMed  CAS  Google Scholar 

  12. Poli G, Dianzani MU, Cheeseman KH, Slater TF, Lang J, Esterbauer H (1985) Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem J 227:629–638

    PubMed  CAS  Google Scholar 

  13. Everett SM, Singh R, Leuratti C, White KL, Neville P, Greenwood D, Marnett LJ, Schorah CJ, Forman D, Shuker D, Axon AT (2001) Levels of malondialdehyde-deoxyguanosine in the gastric mucosa: relationship with lipid ­peroxidation, ascorbic acid, and Helicobacter pylori. Cancer Epidemiol Biomarkers Prev 10:369–376

    PubMed  CAS  Google Scholar 

  14. Dennis KJ, Shibamoto T (1989) Production of malonaldehyde from squalene, a major skin surface lipid, during UV-irradiation. Photochem Photobiol 49:711–716

    Article  PubMed  CAS  Google Scholar 

  15. Adamkiewicz J, Eberle G, Huh N, Nehls P, Rajewsky MF (1985) Quantitation and visualization of alkyl deoxynucleosides in the DNA of mammalian cells by monoclonal antibodies. Environ Health Perspect 62:49–55

    Article  PubMed  CAS  Google Scholar 

  16. Muller R, Adamkiewicz J, Rajewsky MF (1982) Immunological detection and quantification of carcinogen-modified DNA components. IARC Sci Publ 463–479

    Google Scholar 

  17. Nehls P, Adamkiewicz J, Rajewsky MF (1984) Immuno-slot-blot: a highly sensitive immunoassay for the quantitation of carcinogen-modified nucleosides in DNA. J Cancer Res Clin Oncol 108:23–29

    Article  PubMed  CAS  Google Scholar 

  18. Ludeke BI (1992) An immuno-slot-blot assay for detection and quantitation of alkyldeoxyguanosines in DNA. In: Manson MM (ed.) Immunochemical Protocols. Humana Press, Totowa, NJ, p 307

    Google Scholar 

  19. Singh R, Leuratti C, Josyula S, Sipowicz MA, Diwan BA, Kasprzak KS, Schut HA, Marnett LJ, Anderson LM, Shuker DE (2001) Lobe-specific increases in malondialdehyde DNA adduct formation in the livers of mice following infection with Helicobacter hepaticus. Carcinogenesis 22:1281–1287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Prof. Peter B. Farmer (University of Leicester, UK) for use of immuno-slot blot equipment and laboratory space, Dr. Rajinder Singh (University of Leicester, UK) for advice, and Prof. Lawrence Marnett (Vanderbilt University, USA) for supplying the M1dG antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Karbaschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karbaschi, M., Brady, N.J., Evans, M.D., Cooke, M.S. (2012). Immuno-Slot Blot Assay for Detection of UVR-Mediated DNA Damage. In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics