Skip to main content

The Plant Volatilome: Methods of Analysis

  • Protocol
  • First Online:
High-Throughput Phenotyping in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 918))

Abstract

Analysis of plant volatile organic compounds (VOCs) and essential oils (EOs, collectively called the plant volatilome) is an invaluable technique in plant biology, as it provides the qualitative and quantitative composition of bioactive compounds. From a physiological standpoint, the plant volatilome is involved in some critical processes, namely plant–plant interactions, the signaling between symbiotic organisms, the attraction of pollinating insects, a range of biological activities in mammals, and as an endless source of novel drugs and drug leads. This chapter analyses and discusses the most advanced methods of analysis of the plant volatilome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  PubMed  CAS  Google Scholar 

  2. Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631

    Article  CAS  Google Scholar 

  3. Rubiolo P, Liberto E, Sgorbini B, Russo R, Veuthey JL, Bicchi C (2008) Fast-GC-conventional quadrupole mass spectrometry in essential oil analysis. J Sep Sci 31:1074–1084

    Article  PubMed  CAS  Google Scholar 

  4. Maštovská K, Lehotay SJ (2003) Practical approaches to fast gas chromatography-mass spectrometry. J Chromatogr A 1000:153–180

    Article  PubMed  Google Scholar 

  5. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896

    Article  PubMed  CAS  Google Scholar 

  6. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257

    Article  PubMed  Google Scholar 

  7. Baratto C, Faglia G, Pardo M, Vezzoli M, Boarino L, Maffei M, Bossi S, Sberveglieri G (2005) Monitoring plants health in greenhouse for space missions. Sens Actuators B Chem 108:278–284

    Article  Google Scholar 

  8. Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enz Microb Technol 48:427–437

    Article  CAS  Google Scholar 

  9. Mombello D, Li Pira N, Belforte L, Perlo P, Innocenti G, Bossi S, Maffei ME (2009) Porous anodic alumina for the adsorption of volatile organic compounds. Sens Actuators B Chem 137:76–82

    Article  Google Scholar 

  10. Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Tala A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841

    Article  PubMed  Google Scholar 

  11. Clevenger JF (1928) Apparatus for the determination of volatile oil. J Am Pharm Assoc 17:346–349

    CAS  Google Scholar 

  12. EDQM (2008) European Pharmacopoeia. Strasbourg

    Google Scholar 

  13. Rubiolo P, Sgorbini B, Liberto E, Cordero C, Bicchi C (2010) Essential oils and volatiles: sample preparation and analysis. A review. Flav Fragr J 25:282–290

    Article  CAS  Google Scholar 

  14. Bicchi C (2004) Special issue: analysis of flavors and fragrances. J Chromatogr Sci 42:401

    Google Scholar 

  15. Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  PubMed  CAS  Google Scholar 

  16. Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885:129–151

    Article  PubMed  CAS  Google Scholar 

  17. Chai M, Pawliszyn J (1995) Analysis of environmental air samples by solid-phase microextraction and gas-chromatography ion-trap mass-spectrometry. Environ Sci Technol 29:693–701

    Article  PubMed  CAS  Google Scholar 

  18. Elke K, Jermann E, Begerow J, Dunemann L (1998) Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at ­environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high-resolution gas chromatography-flame ionization detection. J Chromatogr A 826:191–200

    Article  PubMed  CAS  Google Scholar 

  19. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcol Sep 11:737–747

    Article  CAS  Google Scholar 

  20. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernandez LA, Etxebarria N, Zuloaga O (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217:2642–2666

    Article  PubMed  CAS  Google Scholar 

  21. Klee MS, Blumberg LM (2002) Theoretical and practical aspects of fast gas chromatography and method translation. J Chromatogr Sci 40:234–247

    PubMed  CAS  Google Scholar 

  22. Agilent (2011). http://www.chem.agilent.com

  23. Grob RL, Barry EF (2004) Modern practice of gas chromatography. Wiley, Hoboken

    Book  Google Scholar 

  24. McNair H, Miller JM (2009) Basic gas chromatography. Wiley, Hoboken

    Book  Google Scholar 

  25. Portoles T, Sancho JV, Hernandez F, Newton A, Hancock P (2010) Potential of atmospheric pressure chemical ionization source in GC-QTOF MS for pesticide residue analysis. J Mass Spectrom 45:926–936

    Article  PubMed  CAS  Google Scholar 

  26. Kováts E (1958) Gas-chromatographische charakterisierung organischer verbindungen. Teil 1: retentions indices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv Chim Acta 41:1915–1932

    Article  Google Scholar 

  27. van den Dool H (1974) Standardisation of gas chromatographic analysis of essential oils. Ph.D. Thesis, Groningen

    Google Scholar 

  28. van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  29. d’Acampora Zellner B, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L (2008) Linear retention indices in gas chromatographic ­analysis: a review. Flav Fragr J 23:297–314

    Article  Google Scholar 

  30. Blumberg LM, Klee MS (1998) Method translation and retention time locking in partition GC. Anal Chem 70:3828–3839

    Article  CAS  Google Scholar 

  31. AMDIS - version 2.65. (2007) http://chemdata.nist.gov/mass-spc/amdis

  32. Anon. (2004) Flavors RTL databases for GC-FID and GC/MS. Agilent Technologies, Santa Clara

    Google Scholar 

  33. FFNSC (2011) MS Library ver. 1.3. Chromaleont, Messina

    Google Scholar 

  34. NIST/EPA/NIH (2011) NIST 05 – mass spectral library. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  35. Cicchetti E, Merle P, Chaintreau A (2008) Quantitation in gas chromatography: usual practices and performances of a response factor database. Flav Fragr J 23:450–459

    Article  CAS  Google Scholar 

  36. Bicchi C, Liberto E, Matteodo M, Sgorbini B, Mondello L, Zellner BD, Costa R, Rubiolo P (2008) Quantitative analysis of essential oils: a complex task. Flav Fragr J 23:382–391

    Article  CAS  Google Scholar 

  37. Cordero C, Bicchi C, Joulain D, Rubiolo P (2007) Identification, quantitation and method validation for the analysis of suspected allergens in fragrances by comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry and with flame ionization detection. J Chromatogr A 1150:37–49

    Article  PubMed  CAS  Google Scholar 

  38. Chaintreau A, Joulain D, Marin C, Schmidt CO, Vey M (2003) GC-MS quantitation of fragrance compounds suspected to cause skin reactions. 1. J Agric Food Chem 51:6398–6403

    Article  PubMed  CAS  Google Scholar 

  39. Giddings JC (1987) Concepts and comparisons in multidimensional separation. J High Res Chromatogr 10:319–323

    Article  CAS  Google Scholar 

  40. Deans DR (1968) A new technique in ­heart-cutting in gas chromatography. Chro­matographia 1:18–21

    Article  Google Scholar 

  41. Mondello L, Catalfamo M, Dugo C, Dugo P (1998) Multidimensional tandem capillary gas chromatography system for the analysis of real complex samples. Part I. Development of a fully automated tandem gas chromatography system. J Chromatogr Sci 36:201–209

    CAS  Google Scholar 

  42. Liu ZY, Phillips JB (1991) Comprehensive 2-dimensional gas-chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231

    CAS  Google Scholar 

  43. Adahchour M, Beens J, Brinkman U (2008) Recent developments in the application of comprehensive two-dimensional gas chromatography. J Chromatogr A 1186:67–108

    Article  PubMed  CAS  Google Scholar 

  44. Bicchi C, Cagliero C, Rubiolo P (2011) New trends in the analysis of the volatile fraction of matrices of vegetable origin: a short overview. A review. Flav Fragr J 26:321–325

    CAS  Google Scholar 

  45. Roeck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Article  CAS  Google Scholar 

  46. Sanz O, Echave FJ, Sanchez M, Monzon A, Montes M (2008) Aluminium foams as structured supports for volatile organic compounds (VOCs) oxidation. Appl Catal A Gen 340:125–132

    Article  CAS  Google Scholar 

  47. de Oliveira EC, Muller EI, Abad F, Dallarosa J, Adriano C (2010) Internal standard versus external standard calibration: an uncertainty case study of a liquid chromatography analysis. Quimica Nova 33:984–987

    Article  Google Scholar 

  48. Reichenbach SE, Tian X, Cordero C, Tao Q (2012) Features for non-targeted cross-sample analysis with comprehensive two-dimensional chromatography. J Chromatogr A 1226:140–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Maffei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bicchi, C., Maffei, M. (2012). The Plant Volatilome: Methods of Analysis. In: Normanly, J. (eds) High-Throughput Phenotyping in Plants. Methods in Molecular Biology, vol 918. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-995-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-995-2_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-994-5

  • Online ISBN: 978-1-61779-995-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics