Advertisement

Reverse Genetic Studies Using Antisense Morpholino Oligonucleotides

  • Yanan Zhao
  • Shoko Ishibashi
  • Enrique AmayaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 917)

Abstract

Here we present a protocol, which allows loss-of-function studies in Xenopus embryos using antisense morpholino oligonucleotides (MOs). Gene knockdown studies provide a critical method for assessing gene function in vitro and in vivo. Such studies are currently performed in Xenopus using primarily one of the two main methods: (1) overexpression of dominant negative constructs or (2) inhibition of gene function by using MOs targeting either the initiation of translation or mRNA splicing. While a dominant negative approach is very effective, it often suffers from specificity. Given that MOs target very specific nucleotide sequences in the target RNA, it suffers considerably less from issues of specificity. The most convenient method for introducing MOs into embryos is through microinjection, which is a simple procedure. Therefore, a reverse genetics approach in Xenopus using MOs is an extremely powerful tool to study gene function, particularly when taking advantage of available sequence data in the post-genomic era. Furthermore, given the well-established fate map in Xenopus, it is also very easy to generate mosaic knockdown embryos, where the gene of interest is affected in defined regions of the embryo. Finally it should be noted that MOs can also be used to block miRNA function and processing, so that it provides a convenient method to not only perform gene knockdown studies on protein coding genes, but also noncoding genes. The protocol we describe here is for both Xenopus laevis and Xenopus tropicalis.

Key words

Xenopus Morpholino MO Loss-of-function experiment 

References

  1. 1.
    Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–95PubMedCrossRefGoogle Scholar
  2. 2.
    Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489(1):141–58PubMedCrossRefGoogle Scholar
  3. 3.
    Schmajuk G, Sierakowska H, Kole R (1999) Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem 274(31):21783–9PubMedCrossRefGoogle Scholar
  4. 4.
    Flynt AS et al (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 39(2):259–63PubMedCrossRefGoogle Scholar
  5. 5.
    Kloosterman WP et al (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203PubMedCrossRefGoogle Scholar
  6. 6.
    Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 20(1):19–32PubMedCrossRefGoogle Scholar
  7. 7.
    Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222(1):124–34PubMedCrossRefGoogle Scholar
  8. 8.
    Howard EW et al (2001) SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos. Development 128(3):365–75PubMedGoogle Scholar
  9. 9.
    Satou Y, Imai KS, Satoh N (2001) Action of morpholinos in Ciona embryos. Genesis 30(3):103–6PubMedCrossRefGoogle Scholar
  10. 10.
    Audic Y et al (2001) Cyclin E morpholino delays embryogenesis in Xenopus. Genesis 30(3):107–9PubMedCrossRefGoogle Scholar
  11. 11.
    Schweickert A et al (2001) Pitx1 and Pitx2c are required for ectopic cement gland formation in Xenopus laevis. Genesis 30(3):144–8PubMedCrossRefGoogle Scholar
  12. 12.
    Sumanas S, Ekker SC (2001) Xenopus frizzled-7 morphant displays defects in dorsoventral patterning and convergent extension movements during gastrulation. Genesis 30(3):119–22PubMedCrossRefGoogle Scholar
  13. 13.
    Nutt SL et al (2001) Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 30(3):110–3PubMedCrossRefGoogle Scholar
  14. 14.
    Segawa H et al (2001) Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish. Neuron 30(2):423–36PubMedCrossRefGoogle Scholar
  15. 15.
    Shepherd IT, Beattie CE, Raible DW (2001) Functional analysis of zebrafish GDNF. Dev Biol 231(2):420–35PubMedCrossRefGoogle Scholar
  16. 16.
    Yang Z, Liu N, Lin S (2001) A zebrafish forebrain-specific zinc finger gene can induce ectopic dlx2 and dlx6 expression. Dev Biol 231(1):138–48PubMedCrossRefGoogle Scholar
  17. 17.
    Kos R et al (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing ­melanogenesis in avian embryos. Development 128(8):1467–79PubMedGoogle Scholar
  18. 18.
    Coonrod SA et al (2001) A morpholino phenocopy of the mouse mos mutation. Genesis 30(3):198–200PubMedCrossRefGoogle Scholar
  19. 19.
    Partridge M et al (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 6(3):169–75PubMedCrossRefGoogle Scholar
  20. 20.
    Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30(3):154–6PubMedCrossRefGoogle Scholar
  21. 21.
    Tan X et al (2006) SmyD1, a histone ­methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103(8):2713–8PubMedCrossRefGoogle Scholar
  22. 22.
    Kunz M et al (2004) Autoregulation of canonical Wnt signaling controls midbrain development. Dev Biol 273(2):390–401PubMedCrossRefGoogle Scholar
  23. 23.
    Moody SA (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119(2):560–78PubMedCrossRefGoogle Scholar
  24. 24.
    Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122(2):300–19PubMedCrossRefGoogle Scholar
  25. 25.
    Rana AA et al (2006) Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2(11):e193PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Healing Foundation Centre, The Faculty of Life SciencesUniversity of ManchesterManchesterEngland, UK
  2. 2.Healing Foundation Centre, Faculty of Life SciencesUniversity of ManchesterManchesterEngland, UK

Personalised recommendations