Skip to main content

A Bromodeoxyuridine (BrdU) Based Protocol for Characterizing Proliferating Progenitors in Xenopus Embryos

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

BrdU is a thymidine analog that is incorporated into DNA during the S-phase of the cell cycle. BrdU incorporation can be used to quantify the number of cells that are in S-phase in the time period that BrdU is available. Thus, BrdU incorporation is an essential method in the quantitative analysis of cell proliferation, during normal embryonic development or after experimental manipulation. It is a reliable and versatile method that can be easily combined with immunohistochemistry and in situ hybridization to relate cell proliferation with gene expression. BrdU incorporation has been used in all model organisms; here, we describe a protocol adapted for use in Xenopus embryos.

The authors Hélène Auger and Raphaël Thuret contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  PubMed  CAS  Google Scholar 

  2. Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318

    Article  PubMed  CAS  Google Scholar 

  3. Chapouton P, Adolf B, Leucht C, Tannhauser B, Ryu S, Driever W, Bally-Cuif L (2006) her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain. Development 133:4293–4303

    Article  PubMed  CAS  Google Scholar 

  4. Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538

    Article  PubMed  CAS  Google Scholar 

  5. Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20:233–243

    Article  PubMed  CAS  Google Scholar 

  6. Locker M, Agathocleous M, Amato MA, Parain K, Harris WA, Perron M (2006) Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev 20:3036–3048

    Article  PubMed  CAS  Google Scholar 

  7. Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F, Huttner WB (2011) Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun 2:154

    Article  PubMed  Google Scholar 

  8. Alunni A, Hermel JM, Heuze A, Bourrat F, Jamen F, Joly JS (2010) Evidence for neural stem cells in the medaka optic tectum proliferation zones. Dev Neurobiol 70:693–713

    Article  PubMed  CAS  Google Scholar 

  9. Conboy MJ, Karasov AO, Rando TA (2007) High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol 5:e102

    Article  PubMed  Google Scholar 

  10. Gomez-Nicola D, Valle-Argos B, Pallas-Bazarra N, Nieto-Sampedro M (2011) Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol Biol Cell 22:1960–1970

    Article  PubMed  CAS  Google Scholar 

  11. Martynoga B, Morrison H, Price DJ, Mason JO (2005) Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283:113–127

    Article  PubMed  CAS  Google Scholar 

  12. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  PubMed  CAS  Google Scholar 

  13. Sabherwal N, Tsutsui A, Hodge S, Wei J, Chalmers AD, Papalopulu N (2009) The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis. Development 136:2767–2777

    Article  PubMed  CAS  Google Scholar 

  14. Zhang C, Basta T, Jensen ED, Klymkowsky MW (2003) The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130:5609–5624

    Article  PubMed  CAS  Google Scholar 

  15. Rothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, Fortin G, Gotz M, Jagasia R, Bally-Cuif L (2011) Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 138:1459–1469

    Article  PubMed  CAS  Google Scholar 

  16. Zupanc GK, Ott R (1999) Cell proliferation after lesions in the cerebellum of adult teleost fish: time course, origin, and type of new cells produced. Exp Neurol 160:78–87

    Article  PubMed  CAS  Google Scholar 

  17. Hayes NL, Nowakowski RS (2000) Exploiting the dynamics of S-phase tracers in developing brain: interkinetic nuclear migration for cells entering versus leaving the S-phase. Dev Neurosci 22:44–55

    Article  PubMed  CAS  Google Scholar 

  18. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242

    Article  PubMed  CAS  Google Scholar 

  19. Fagotto F, Brown CM (2008) Detection of nuclear beta-catenin in Xenopus embryos. Methods Mol Biol 469:363–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Federico Calegari, Muriel Perron, and Morgan Locker for many useful discussions and protocols. This work was funded by a Wellcome Trust Senior Research Fellowship to NP. HA and RT are Research Associates, funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Papalopulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Auger, H., Thuret, R., Yakoubi, W.E., Papalopulu, N. (2012). A Bromodeoxyuridine (BrdU) Based Protocol for Characterizing Proliferating Progenitors in Xenopus Embryos. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics