Skip to main content

Husbandry of Xenopus tropicalis

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

Xenopus tropicalis combine the advantages of X. laevis, for example using explants and targeted gain of function, with the ability to take classical genetics approaches to answering cell and developmental biology questions making it arguably the most versatile of the model organisms. Against this background, husbandry of X. tropicalis is less well developed than for its larger, more robust relative. Here we describe the methods used to keep and breed these frogs successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burki E (1985) The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid. Biochem Genet 23(1–2):73–88

    Article  PubMed  CAS  Google Scholar 

  2. de Sa RO, Hillis DM (1990) Phylogenetic relationships of the pipid frogs Xenopus and Silurana: an integration of ribosomal DNA and morphology. Mol Biol Evol 7(4):365–376

    PubMed  Google Scholar 

  3. Hellsten U et al (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328(5978):633–636

    Article  PubMed  CAS  Google Scholar 

  4. Wells DE et al (2011) A genetic map of Xenopus tropicalis. Dev Biol 354(1):1–8

    Article  PubMed  CAS  Google Scholar 

  5. Goda T et al (2006) Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2(6):e91

    Article  PubMed  Google Scholar 

  6. Grammer TC et al (2005) Identification of mutants in inbred Xenopus tropicalis. Mech Dev 122(3):263–272

    Article  PubMed  CAS  Google Scholar 

  7. Noramly S et al (2005) A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. Mech Dev 122(3):273–287

    Article  PubMed  CAS  Google Scholar 

  8. Abu-Daya A et al (2009) Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol 336(1):20–29

    Article  PubMed  CAS  Google Scholar 

  9. Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:75

    Article  PubMed  Google Scholar 

  10. Khokha MK et al (2009) Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev Dyn 238(6):1398–1446

    Article  PubMed  CAS  Google Scholar 

  11. Akkers RC et al (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17(3):425–434

    Article  PubMed  CAS  Google Scholar 

  12. Akkers RC et al (2010) ChIP-chip designs to interrogate the genome of Xenopus embryos for transcription factor binding and epigenetic regulation. PLoS One 5(1):e8820

    Article  PubMed  Google Scholar 

  13. Kenwrick S, Amaya E, Papalopulu N (2004) Pilot morpholino screen in Xenopus tropicalis identifies a novel gene involved in head development. Dev Dyn 229(2):289–299

    Article  PubMed  CAS  Google Scholar 

  14. Chae J, Zimmerman LB, Grainger RM (2002) Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mech Dev 117(1–2):235–241

    Article  PubMed  CAS  Google Scholar 

  15. Hartley KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc Natl Acad Sci U S A 99(3):1377–1382

    Article  PubMed  CAS  Google Scholar 

  16. Ryffel GU et al (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 31(8):e44

    Article  PubMed  Google Scholar 

  17. Abu-Daya A et al (2011) The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. Dev Biol 349(2):204–212

    Article  PubMed  CAS  Google Scholar 

  18. Ubbels GA et al (1983) Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs. J Embryol Exp Morphol 77:15–37

    PubMed  CAS  Google Scholar 

  19. Trott KA et al (2004) Characterization of a Mycobacterium ulcerans-like infection in a colony of African tropical clawed frogs (Xenopus tropicalis). Comp Med 54(3):309–317

    PubMed  CAS  Google Scholar 

  20. Mve-Obiang A et al (2005) A newly discovered mycobacterial pathogen isolated from laboratory colonies of Xenopus species with lethal infections produces a novel form of mycolactone, the Mycobacterium ulcerans macrolide toxin. Infect Immun 73(6):3307–3312

    Article  PubMed  CAS  Google Scholar 

  21. Suykerbuyk P et al (2007) Mycobacterium liflandii infection in European colony of Silurana tropicalis. Emerg Infect Dis 13(5):743–746

    Article  PubMed  Google Scholar 

  22. Sanchez-Morgado JM, Gallagher A, Johnson LK (2009) Mycobacterium gordonae infection in a colony of African clawed frogs (Xenopus tropicalis). Lab Anim 43(3):300–303

    Article  PubMed  CAS  Google Scholar 

  23. Ribas L et al (2009) Expression profiling the temperature-dependent amphibian response to infection by Batrachochytrium dendrobatidis. PLoS One 4(12):e8408

    Article  PubMed  Google Scholar 

  24. Parker JM et al (2002) Clinical diagnosis and treatment of epidermal chytridiomycosis in African clawed frogs (Xenopus tropicalis). Comp Med 52(3):265–268

    PubMed  CAS  Google Scholar 

  25. Sargent MG, Mohun TJ (2005) Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 41(1):41–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The European Xenopus Resource Centre is funded by the Wellcome Trust, BBSRC and NC3Rs. The authors are very grateful to Colin Sharpe for suggesting improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lyle B. Zimmerman or Matthew Guille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jafkins, A., Abu-Daya, A., Noble, A., Zimmerman, L.B., Guille, M. (2012). Husbandry of Xenopus tropicalis . In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics