Skip to main content

Tet-On Binary Systems for Tissue-Specific and Inducible Transgene Expression

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

Tissue-specific and inducible control of transgene expression is a cornerstone of modern studies in developmental biology. Even though such control of transgene expression has been accomplished in Xenopus, no general or widely available set of transgenic lines have been produced akin to those found in mouse and zebrafish. Here, I describe the design and characterization of transgenic lines in Xenopus constituting the Tet-On binary transgene expression system comprising two components: (1) rtTA transgenic lines, i.e., lines harboring the doxycycline- (Dox-) dependent transgenic transcription factor rtTA under control of a tissue-specific promoter and (2) transgenic promoter (TRE) transgenic lines, i.e., lines harboring a gene of interest (hereafter called the transgene) under control of a promoter (TRE). In double transgenic animals, i.e., embryos or tadpoles harboring both the rtTA and TRE components, transgene expression remains off the absence of Dox. Addition of Dox to the rearing water causes a conformational change in rtTA allowing it to bind the TRE promoter and induce transgene expression. Tissue specificity of transgene expression is determined by the promoter regulating rtTA expression, and inducibility is determined by the addition of Dox to the rearing water. Deposition of rtTA and TRE transgenic lines enabling tissue-specific inducible control of transgene expression into the Xenopus stock center will provide a powerful and flexible resource for studies in developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroll KL, Amaya E (1996) Transgenic xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    PubMed  CAS  Google Scholar 

  2. Huang H, Marsh-Armstrong N, Brown DD (1999) Metamorphosis is inhibited in transgenic xenopus laevis tadpoles that overexpress type III deiodinase. Proc Natl Acad Sci U S A 96:962–967

    Article  PubMed  CAS  Google Scholar 

  3. Buchholz DR, Hsia SC, Fu L, Shi YB (2003) A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol Cell Biol 23:6750–6758

    Article  PubMed  CAS  Google Scholar 

  4. Wheeler GN, Hamilton FS, Hoppler S (2000) Inducible gene expression in transgenic xenopus embryos. Curr Biol 10:849–852

    Article  PubMed  CAS  Google Scholar 

  5. Oofusa K, Tooia O, Kashiwagie A, Kashiwagie K, Kondoe Y, Obara M, Yoshizato K (2003) Metal ion-responsive transgenic xenopus laevis as an environmental monitoring animal. Environ Toxicol Pharmacol 13:153–159

    Article  PubMed  CAS  Google Scholar 

  6. Das B, Brown DD (2004) Controlling transgene expression to study xenopus laevis metamorphosis. Proc Natl Acad Sci U S A 101:4839–4842

    Article  PubMed  CAS  Google Scholar 

  7. Hartley KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic xenopus using the binary Gal4-UAS system. Proc Natl Acad Sci U S A 99:1377–1382

    Article  PubMed  CAS  Google Scholar 

  8. Roose M, Sauert K, Turan G, Solomentsew N, Werdien D, Pramanik K, Senkel S, Ryffel GU, Waldner C (2009) Heat-shock inducible Cre strains to study organogenesis in transgenic xenopus laevis. Transgenic Res 18:595–605

    Article  PubMed  CAS  Google Scholar 

  9. Waldner C, Sakamaki K, Ueno N, Turan G, Ryffel GU (2006) Transgenic xenopus laevis strain expressing cre recombinase in muscle cells. Dev Dyn 235:2220–2228

    Article  PubMed  CAS  Google Scholar 

  10. Cai L, Das B, Brown DD (2007) Changing a limb muscle growth program into a resorption program. Dev Biol 304:260–271

    Article  PubMed  CAS  Google Scholar 

  11. Mukhi S, Cai L, Brown DD (2010) Gene switching at xenopus laevis metamorphosis. Dev Biol 338:117–126

    Article  PubMed  CAS  Google Scholar 

  12. Mukhi S, Brown DD (2011) Transdifferentiation of tadpole pancreatic acinar cells to duct cells mediated by notch and stromelysin-3. Dev Biol 351:311–317

    Article  PubMed  CAS  Google Scholar 

  13. Chae J, Zimmerman LB, Grainger RM (2002) Inducible control of tissue-specific transgene expression in xenopus tropicalis transgenic lines. Mech Dev 117:235–241

    Article  PubMed  CAS  Google Scholar 

  14. Rankin SA, Zorn AM, Buchholz DR (2011) New doxycycline-inducible transgenic lines in xenopus. Dev Dyn 240(6):1467–1474

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  16. Sive HL, Grainger RM, Harland RM (2000) Early development of xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  17. Applied Biosystems (2010) TaqMan gene expression assays protocol. http://www.appliedbiosystems.com

  18. Presnell JK, Schreibman MP (1997) Humason’s animal tissue techniques. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  19. Shi YB, Liang VC (1994) Cloning and characterization of the ribosomal protein L8 gene from xenopus laevis. Biochim Biophys Acta 1217:227–228

    Article  PubMed  CAS  Google Scholar 

  20. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 97:7963–7968

    Article  PubMed  CAS  Google Scholar 

  21. Mohun TJ, Garrett N, Gurdon JB (1986) Upstream sequences required for tissue-specific activation of the cardiac actin gene in xenopus laevis embryos. EMBO J 5:3185–3193

    PubMed  CAS  Google Scholar 

  22. Allen BG, Weeks DL (2005) Transgenic xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2:975–979

    Article  PubMed  CAS  Google Scholar 

  23. Sekkali B, Tran HT, Crabbe E, De Beule C, Van Roy F, Vleminckx K (2008) Chicken beta-globin insulator overcomes variegation of transgenes in xenopus embryos. FASEB J 22:2534–2540

    Article  PubMed  CAS  Google Scholar 

  24. Aker M, Tubb J, Groth AC, Bukovsky AA, Bell AC, Felsenfeld G, Kiem HP, Stamatoyannopoulos G, Emery DW (2007) Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 18:333–343

    Article  PubMed  CAS  Google Scholar 

  25. Smolich BD, Tarkington SK, Saha MS, Stathakis DG, Grainger RM (1993) Characterization of xenopus laevis gamma-crystallin-encoding genes. Gene 128:189–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding sources for this work were NIH R03HD059995 and NSF IOS 0950538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Buchholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Buchholz, D.R. (2012). Tet-On Binary Systems for Tissue-Specific and Inducible Transgene Expression. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics