Skip to main content

Xenopus Transgenics: Methods Using Transposons

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

The generation of transgenic animals is an essential tool for many genetic strategies. DNA “cut-and-paste” transposon systems can be used to efficiently modify the Xenopus genome. The DNA transposon substrate, harbored on a circularized plasmid, is co-injected into fertilized Xenopus embryos at the one-cell stage together with mRNA encoding the cognate transposase enzyme. The cellular machinery rapidly translates the exogenous mRNA to produce active transposase enzyme that catalyzes excision of the transposon substrate from the plasmid and stable integration into the genomic DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Amaya E, Offield MF, Grainger RM (1998) Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet 14:253–255

    Article  PubMed  CAS  Google Scholar 

  2. Amaya E, Kroll KL (1999) A method for generating transgenic frog embryos. Methods Mol Biol 97:393–414

    PubMed  CAS  Google Scholar 

  3. Sparrow DB, Latinkic B, Mohun TJ (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res 28:E12

    Article  PubMed  CAS  Google Scholar 

  4. Chesneau A, Sachs LM, Chai N, Chen Y, Du Pasquier L, Loeber J, Pollet N, Reilly M, Weeks DL, Bronchain OJ (2008) Transgenesis procedures in Xenopus. Biol Cell 100:503–521

    Article  PubMed  CAS  Google Scholar 

  5. Etkin LD, Pearman B (1987) Distribution, expression and germ line transmission of exogenous DNA sequences following microinjection into Xenopus laevis eggs. Development 99:15–23

    PubMed  CAS  Google Scholar 

  6. Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123:103–113

    Article  PubMed  CAS  Google Scholar 

  7. Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1:1703–1710

    Article  PubMed  CAS  Google Scholar 

  8. Johnson Hamlet MR, Mead PE (2003) Sleeping Beauty and Xenopus: transposons as genetic tools. Curr Genomics 4:687–697

    Article  Google Scholar 

  9. Miskey C, Izsvak Z, Kawakami K, Ivics Z (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62:629–641

    Article  PubMed  CAS  Google Scholar 

  10. Ivics Z, Izsvak Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Methods Mol Biol 260:255–276

    PubMed  CAS  Google Scholar 

  11. Yergeau DA, Mead PE (2007) Manipulating the Xenopus genome with transposable elements. Genome Biol 8(suppl 1):S11

    Article  PubMed  Google Scholar 

  12. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2:975–979

    Article  PubMed  CAS  Google Scholar 

  13. Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1:1248–1257

    Article  PubMed  CAS  Google Scholar 

  14. Johnson Hamlet MR, Yergeau DA, Kuliyev E, Takeda M, Taira M, Kawakami K, Mead PE (2006) Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44:438–445

    Article  CAS  Google Scholar 

  15. Yergeau DA, Johnson Hamlet MR, Kuliyev E, Zhu H, Doherty JR, Archer TD, Subhawong AP, Valentine MB, Kelley CM, Mead PE (2009) Transgenesis in Xenopus using the Sleeping Beauty transposon system. Dev Dyn 238:1727–1743

    Article  PubMed  CAS  Google Scholar 

  16. Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE (2010) Remobilization of Tol2 transposons in Xenopus tropicalis. BMC Dev Biol 10:11

    Article  PubMed  Google Scholar 

  17. Whitelaw E, Sutherland H, Kearns M, Morgan H, Weaving L, Garrick D (2001) Epigenetic effects on transgene expression. Methods Mol Biol 158:351–368

    PubMed  CAS  Google Scholar 

  18. Doherty JR, Johnson Hamlet MR, Kuliyev E, Mead PE (2007) A flk-1 promoter/enhancer reporter transgenic Xenopus laevis generated using the Sleeping Beauty transposon system: an in vivo model for vascular studies. Dev Dyn 236:2808–2817

    Article  PubMed  CAS  Google Scholar 

  19. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  20. Vigdal TJ, Kaufman CD, Izsvak Z, Voytas DF, Ivics Z (2002) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452

    Article  PubMed  CAS  Google Scholar 

  21. Sinzelle L, Vallin J, Coen L, Chesneau A, Du Pasquier D, Pollet N, Demeneix B, Mazabraud A (2006) Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15:751–760

    Article  PubMed  CAS  Google Scholar 

  22. Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383:30

    Article  PubMed  CAS  Google Scholar 

  23. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(suppl 1):S7

    Article  PubMed  Google Scholar 

  24. Karsi A, Moav B, Hackett P, Liu Z (2001) Effects of insert size on transposition efficiency of the sleeping beauty transposon in mouse cells. Mar Biotechnol (NY) 3:241–245

    Article  CAS  Google Scholar 

  25. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  26. Miskey C, Izsvak Z, Plasterk RH, Ivics Z (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31:6873–6881

    Article  PubMed  CAS  Google Scholar 

  27. Franz G, Loukeris TG, Dialektaki G, Thompson CR, Savakis C (1994) Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. Proc Natl Acad Sci U S A 91:4746–4750

    Article  PubMed  CAS  Google Scholar 

  28. Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474

    Article  PubMed  CAS  Google Scholar 

  29. Koga A, Shimada A, Kuroki T, Hori H, Kusumi J, Kyono-Hamaguchi Y, Hamaguchi S (2007) The Tol1 transposable element of the medaka fish moves in human and mouse cells. J Hum Genet 52:628–635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HD042994 and MH079381 and by the American Lebanese and Syrian Associated Charities (ALSAC) to PEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Mead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kelley, C.M., Yergeau, D.A., Zhu, H., Kuliyev, E., Mead, P.E. (2012). Xenopus Transgenics: Methods Using Transposons. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics