Skip to main content

Non-invasive Flux Measurements Using Microsensors: Theory, Limitations, and Systems

  • Protocol
  • First Online:
Book cover Plant Salt Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 913))

Abstract

Knowledge of the fluxes of ions and neutral molecules across the outer membrane or boundary of living tissues and cells is an important strand of applied molecular biology. Such fluxes can be measured non-invasively with good resolution in time and space. Two systems (MIFEā„¢ and SIET) have been developed and have become widely used to implement this technique, and they are commercially available. This Chapter is the first comparative description of these two systems. It gives the context, the basic underlying theory, practical limitations inherent in the technique, theoretical developments, guidance on the practicalities of the technique, and the functionality of the two systems. Although the technique is strongly relevant to plant salt tolerance and other plant stresses (drought, temperature, pollutants, waterlogging), it also has rich relevance throughout biomedical studies and the molecular genetics of transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas WJ, Kochian LV (1986) Ion transport processes in corn roots: an approach utilizing microelectrode techniques. In: Gensler WG (ed) Advanced agricultural instrumentation: design and use 402-425. Martinus Nijhoff, Dordrecht

    Google ScholarĀ 

  2. Newman IA, Kochian LV, Grusak MA et al (1987) Fluxes of H+ and K+ in corn rootsā€”characterization and stoichiometries using ion selective microelectrodes. Plant Physiol 84:1177ā€“1184

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Kochian LV, Shaff JE, Lucas WJ (1989) High affinity K+ uptake in maize roots. A lack of coupling with H+ efflux. Plant Physiol 91:1202ā€“1211

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Jaffe LF, Levy S (1987) Calcium gradients measured with a vibrating calcium-selective electrode. Proc IEEE/EMBS Conf 9:779ā€“781

    Google ScholarĀ 

  5. Shabala SN (2006) Non-invasive microelectrode ion flux measurements in plant stress physiology. In: Volkov AG (ed) Plant electrophysiologyā€”theory and methods. Springer, Berlin

    Google ScholarĀ 

  6. Chen Z, Pottosin II, Cuin TA et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714ā€“1725

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Shirihai D, Smith P, Hammar K et al (1998) Microglia generate external proton and potassium gradients utilizing a member of the H/K ATPase family. Glia 23:339ā€“348

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Tyerman SD, Beilby M, Whittington J et al (2001) Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Aust J Plant Physiol 28:591ā€“604

    CASĀ  Google ScholarĀ 

  9. Ryan PR, Newman IA, Shields B (1990) Ion fluxes in corn roots measured by microelectrodes with ion-specific liquid membranes. J Membr Sci 53:59ā€“69

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Smith PJS, Hammar K, Porterfield DM et al (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech 46:398ā€“417

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1ā€“14

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Kunkel JG, Cordeiro S, Xu Y et al (2006) Use of non-invasive ion-selective microelectrode techniques for the study of plant development. In: Volkov AG (ed) Plant electrophysiologyā€”theory and methods. Springer, Berlin

    Google ScholarĀ 

  13. Messerli MA, Robinson KR, Smith PJS (2006) Electrochemical sensor applications to the study of molecular physiology and analyte flux in plants. In: Volkov AG (ed) Plant electrophysiologyā€”theory and methods. Springer, Berlin

    Google ScholarĀ 

  14. Porterfield DM (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 22:1186ā€“1196

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. McLamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40(11):5308ā€“5320

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Henriksen GH, Bloom AJ, Spanswick RM (1990) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion selective microelectrodes. Plant Physiol 93:271ā€“280

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Henriksen GH, Raman DR, Walker LP et al (1992) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. II. Patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique. Plant Physiol 99:734ā€“747

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Sun J, Chen S, Dai S et al (2009) Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signal Behav 4:261ā€“264

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady state extracellular currents. J Cell Biol 63:614ā€“628

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Xu Y, Sun T, Yin L (2006) Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol 48:823ā€“831

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Porterfield DM, Trimarchi JR, Keefe DL et al (1998) Metabolism and calcium homeostasis during development of the mouse embryo to the blastocyst stage in M2 culture medium. Biol Bull 195:208ā€“209

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Land SC, Porterfield DM, Sanger RH et al (1999) The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol 202:211ā€“218

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Porterfield DM, Smith PJS (2000) CharacĀ­terization of trans-cellular oxygen and proton fluxes from Spirogyra grevilleana using self-referencing microelectrodes. Protoplasma 212:80ā€“88

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. McLamore ES, Diggs A, Marzal PC et al (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004ā€“1016

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Porterfield DM, Laskin JD, Jung S-K et al (2001) Proteins and lipids define the diffusional field of nitric oxide. Measurement of nitric oxide fluxes from macrophages using a self-referencing electrode. Am J Physiol 281:L904ā€“L912

    CASĀ  Google ScholarĀ 

  26. McLamore ES, Shi J, Jaroch D et al (2011) A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosens Bioelectron 26:2237ā€“2245

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Shi J, McLamore ES, Jaroch D et al (2011) Oscillatory glucose flux in INS 1 pancreatic Ī² cells: a self-referencing microbiosensor study. Anal Biochem 411:185ā€“193

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. McLamore ES, Mohanty S, Shi J et al (2010) A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 189:14ā€“22

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Pang JY, Newman I, Mendham N et al (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107ā€“1121

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Chatni MR, Porterfield DM (2009) Self-referencing optrode technology for non-invasive real-time measurement of biophysical flux and physiological sensing. Analyst 134:2224ā€“2232

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Chatni MR, Maier DE, Porterfield DM (2009) Optimization of oxygen sensitive optical dye membrane polymers for fluorescent lifetime based physiological biosensing. Sens Actuators B 141:471ā€“477

    ArticleĀ  Google ScholarĀ 

  32. Chatni MR, Li G, Porterfield DM (2009) Frequency domain fluorescence lifetime optrode system design and instrumentation without a concurrent reference LED. Appl Opt 48:5528ā€“5536

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. McLamore ES, Jaroch D, Chatni R et al (2010) Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta 211:384ā€“389

    Google ScholarĀ 

  34. Jayakannan M, Babourina O, Rengel Z (2011) Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes. J Plant Physiol 168:1045ā€“1051

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Demarest JR, Morgan JLM (1995) Effect of pH buffers on proton secretion from gastric xyntic cells measured with vibrating ion-selective microelectrodes. Biol Bull 189:219ā€“220

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Arif I, Newman IA, Keenlyside N (1995) Proton flux measurements from tissues in buffered solution. Plant Cell Environ 18:1319ā€“1324

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Porterfield DM, McLamore ES, Banks MK (2009) Microsensor technology for measuring H+ flux in buffered media. Sens Actuators B 136:383ā€“387

    ArticleĀ  Google ScholarĀ 

  38. Ryan PR, Newman IA, Arif I (1992) Rapid calcium exchange for protons and potassium in cell walls of Chara. Plant Cell Environ 15:675ā€“683

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Arif I, Newman IA (1993) Proton efflux from oat coleoptile cells and exchange with wall calcium after IAA or fusicoccin treatment. Planta 189:377ā€“383

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Shabala S, Newman I (2000) Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall. Ann Bot 85:681ā€“686

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Shipley AM, FeijĆ³ JA (1999) The use of the vibrating probe technique to study steady extracellular currents during pollen germination and tube growth. In: Cresti M, Cai G, Moscatelli S (eds) Fertilization in higher plants: molecular and cytological aspects. Springer, Berlin Heidelberg New York, pp 235ā€“252

    ChapterĀ  Google ScholarĀ 

  42. Faszewski EE, Kunkel JG (2001) Covariance of ion flux measurements allows new interpretation of Xenopus laevis oocyte physiology. J Exp Zool 290:652ā€“661

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Kunkel JG, Lin L-Y, Xu Y et al (2001) The strategic use of good buffers to measure proton gradients around growing pollen tubes. In: Geitmann A, Cresti M, Heath IB (eds) Cell biology of plant and fungal tip growth. Ios Press, Amsterdam, pp 81ā€“94

    Google ScholarĀ 

Download references

Acknowledgements

We thank Mr. Wenjun Wang for providing equipment information of SIET and NMT:SIET system. We thank Mr. Yue (Jeff) Xu and Professor Sergey Shabala for information, advice and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Newman, I., Chen, SL., Porterfield, D.M., Sun, J. (2012). Non-invasive Flux Measurements Using Microsensors: Theory, Limitations, and Systems. In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology, vol 913. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-986-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-986-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-985-3

  • Online ISBN: 978-1-61779-986-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics