Skip to main content

Isotope Techniques to Study Kinetics of Na+ and K+ Transport Under Salinity Conditions

  • Protocol
  • First Online:
Book cover Plant Salt Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 913))

Abstract

Radioisotopes (particularly 22Na, 24Na, 42K, and 86Rb) have been used for many decades to trace the fluxes and accumulation of sodium and potassium ions in plant tissues. In this article, standard procedures for the tracing of ion fluxes are described, with emphasis on special problems encountered when examining K+ and Na+ transport under salinity conditions. We focus in particular on unidirectional influx measurements, while also providing a brief introduction to compartmental analysis by tracer efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein E (1966) Dual pattern of ion absorption by plant cells and by plants. Nature 212:1324–1327

    Article  CAS  Google Scholar 

  2. Siddiqi MY, Glass ADM, Ruth TJ et al (1990) Studies of the uptake of nitrate in barley. I. Kinetics of NO -3 influx. Plant Physiol 93:1426–1432

    Article  PubMed  CAS  Google Scholar 

  3. Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    Article  CAS  Google Scholar 

  4. Cheeseman JM (1982) Pump-leak sodium fluxes in low-salt corn roots. J Membrane Biol 70:157–164

    Article  CAS  Google Scholar 

  5. Wang B, Davenport RJ, Volkov V et al (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    Article  PubMed  CAS  Google Scholar 

  6. Britto DT, Siddiqi MY, Glass ADM et al (2001) Futile transmembrane NH +4 cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    Article  PubMed  CAS  Google Scholar 

  7. Walker NA, Pitman MG (1976) Measurement of fluxes across membranes. Part A. In: Lüttge U, Pitman MG (eds) Encyclopedia of plant physiology, vol 2. Springer-Verlag, Berlin

    Google Scholar 

  8. Lee RB, Clarkson DT (1986) 13N studies of nitrate fluxes in barley roots. I. Compartmental analysis from measurements of 13N efflux. J Exp Bot 37:1753–1767

    Article  CAS  Google Scholar 

  9. Memon AR, Saccomani M, Glass ADM (1985) Efficiency of potassium utilization by barley varieties—The role of subcellular compartmentation. J Exp Bot 173:1860–1876

    Article  Google Scholar 

  10. Britto DT, Kronzucker HJ (2001) Can unidirectional influx be measured in higher plants? A mathematical approach using parameters from efflux analysis. New Phytol 150:37–47

    Article  CAS  Google Scholar 

  11. Kronzucker HJ, Britto DT (2011) Sodium transport in plants: A critical review. New Phytol 189:54–81

    Article  PubMed  CAS  Google Scholar 

  12. Britto DT, Ebrahimi-Ardebili S, Hamam AM et al (2010) 42K analysis of sodium-induced potassium efflux in barley: Mechanism and ­relevance to salt tolerance. New Phytol 186:373–384

    Article  PubMed  CAS  Google Scholar 

  13. Horie T, Costa A, Kim TH et al (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+ -starved rice roots for growth. EMBO J 26:3003–3014

    Article  PubMed  CAS  Google Scholar 

  14. Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    Article  PubMed  CAS  Google Scholar 

  15. Brownridge JD (1984) The radial distribution of 137Cs and 40K in tree stems. J Plant Nutr 7:887–896

    Article  CAS  Google Scholar 

  16. Maier-Maercker U, Jahnke A (1980) Micro­autoradiography with 43K: a method for the reliable tracing of ion transport in stomata. Zeitschr Pflanzenphysiol 100:35–42

    CAS  Google Scholar 

  17. Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: A hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  PubMed  CAS  Google Scholar 

  18. Roslyakova TV, Molchan OV, Vasekina AV et al (2011) Salt tolerance of barley: Relations between expression of isoforms of vacuolar Na+/H+-antiporter and 22Na+ accumulation. Russ J Plant Physiol 58:24–35

    Article  CAS  Google Scholar 

  19. Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  PubMed  CAS  Google Scholar 

  20. Malagoli P, Britto DT, Schulze LM et al (2008) Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.)—kinetics, energetics, and relation to salinity tolerance. J Exp Bot 59:4109–117

    Article  PubMed  CAS  Google Scholar 

  21. Britto DT, Kronzucker HJ (2009) Ussing’s conundrum and the search for transport mechanisms in plants. New Phytol 183:243–246

    Article  PubMed  CAS  Google Scholar 

  22. Oh D-H, Leidi E, Zhang Q et al (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  PubMed  CAS  Google Scholar 

  23. Yeo AR, Yeo ME, Flowers TJ (1987) The ­contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38:1141–1153

    Article  CAS  Google Scholar 

  24. Szczerba MW, Britto DT, Kronzucker HJ (2006) The face value of ion fluxes: the challenge of determining influx in the low-affinity transport range. J Exp Bot 57:3293–3300

    Article  PubMed  CAS  Google Scholar 

  25. Lazof D, Cheeseman JM (1988) Sodium and potassium compartmentation and transport in the roots of intact lettuce plants. Plant Physiol 88:1279–1284

    Article  PubMed  CAS  Google Scholar 

  26. Jacquez JA (1996) Compartmental Analysis in Biology and Medicine, 3rd edn. U Michigan Press, Ann Arbor

    Google Scholar 

  27. Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M et al (2006) The cytosolic Na+:K+ ratio does not explain salinity-induced growth impairment in barley: A dual-tracer study using 42K+ and 24Na+. Plant Cell Env 29:2228–2237

    Article  CAS  Google Scholar 

  28. Hajibagheri MA, Flowers TJ, Collins JC et al (1988) A comparison of the methods of X-ray microanalysis, compartmental analysis and ­longitudinal ion profiles to estimate cytoplasmic ion concentrations in two maize varieties. J Exp Bot 39:279–290

    Article  CAS  Google Scholar 

  29. Ashworth S, Rabiner EA, Gunn RN et al (2010) Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J Nucl Med 51:1021–1029

    Article  PubMed  CAS  Google Scholar 

  30. Siddiqi MY, Glass ADM, Ruth TJ (1991) Studies of the uptake of nitrate in barley. III. Compart­mentation of NO -3 . J Exp Bot 42:1455–1463

    Article  CAS  Google Scholar 

  31. Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Analysis of 13NH +4 efflux in spruce roots: A test case for phase identification in compartmental analysis. Plant Physiol 109:481–490

    PubMed  CAS  Google Scholar 

  32. Britto DT, Kronzucker HJ (2003) Trans-stimulation of 13NH +4 efflux provides evidence for the cytosolic origin of tracer in the compartmental analysis of barley roots. Func Plant Biol 30:1233–1238

    Article  CAS  Google Scholar 

  33. Cheeseman JM (1986) Compartmental efflux analysis—An evaluation of the technique and its limitations. Plant Physiol 80:51–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert J. Kronzucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Britto, D.T., Kronzucker, H.J. (2012). Isotope Techniques to Study Kinetics of Na+ and K+ Transport Under Salinity Conditions. In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology, vol 913. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-986-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-986-0_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-985-3

  • Online ISBN: 978-1-61779-986-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics