Skip to main content

Determination of Reactive Oxygen Species in Salt-Stressed Plant Tissues

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 913))

Abstract

Reactive oxygen species (ROS) participate in signaling events that regulate ion channel activity and gene expression. However, excess ROS exert adverse effects that stem from their interaction with macromolecules. Thus, the assessment of the effects of salinity on ROS changes are central to understanding how plants respond and cope with this stress. ROS determination in salt-stressed plants poses specific challenges. On the one hand, salinity comprises osmotic and ion-specific effects which may, in turn, have different effects on ROS production. On the other hand, changes in ROS production may happen when tissues from salinized plants are subject to water potential (Ψ) changes when incubated in non-isosmotic solutions. This chapter provides detailed accounts of methods for ROS detection in tissues from salt-stressed plants and includes suggestions for avoiding artifacts when dealing with such tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141: 312–322

    Article  PubMed  CAS  Google Scholar 

  2. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410

    Article  Google Scholar 

  3. Rodríguez AA, Grunberg K, Taleisnik E (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632

    Article  PubMed  Google Scholar 

  4. Dat J, Vandenabeele S, Vranová E et al (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  5. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  6. Demidchik V (2010) Reactive oxygen species, oxidative stress and plant ion channels. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses, 1st edn. Springer, Berlin

    Chapter  Google Scholar 

  7. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–496

    Article  PubMed  CAS  Google Scholar 

  8. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:25–275

    Google Scholar 

  9. Scandalios J (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  10. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651–681

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein N, Shoresh M, Xu Y et al (2010) Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radic Biol Med 49:1161–1171

    Article  PubMed  CAS  Google Scholar 

  12. Mittova V, Tal M, Volokita M et al (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  PubMed  CAS  Google Scholar 

  13. Rodríguez AA, Maiale SJ, Menéndez AB et al (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  Google Scholar 

  14. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    Article  PubMed  CAS  Google Scholar 

  15. Sandalio LM, Rodríguez Serrano M, Romero Puertas MC et al (2008) Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, 1st edn. Academic, London

    Google Scholar 

  16. Snyrychová I, Ayaydin F, Hideg É (2009) Detecting hydrogen peroxide in leaves in vivo—a comparison of methods. Physiol Plant 135:1–18

    Article  PubMed  Google Scholar 

  17. Kristiansen KA, Jensen PE, Møller IM et al (2009) Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy. Physiol Plant 136:369–383

    Article  PubMed  CAS  Google Scholar 

  18. Swanson SJ, Choi W-G, Chanoca A et al (2010) In Vivo Imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    Article  Google Scholar 

  19. Rodríguez AA, Córdoba AR, Ortega L et al (2004) Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. J Exp Bot 55:1383–1390

    Article  PubMed  Google Scholar 

  20. Bustos D, Lascano R, Villasuso AL et al (2008) Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O ·−2 Levels. Ann Bot 102:551–559

    Article  PubMed  CAS  Google Scholar 

  21. Felix G, Regenass M, Boller T (2000) Sensing of osmotic pressure changes in tomato cells. Plant Physiol 124:1169–1179

    Article  PubMed  CAS  Google Scholar 

  22. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  PubMed  CAS  Google Scholar 

  23. Bass DA, Parce JW, Dechatelet LR et al (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    PubMed  CAS  Google Scholar 

  24. Bestwick CS, Brown IR, Bennet MHR et al (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209–221

    PubMed  CAS  Google Scholar 

  25. Cona A, Rea G, Botta M et al (2006) Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L. J Exp Bot 57:2277–2289

    Article  PubMed  CAS  Google Scholar 

  26. Frahry G, Schopfer P (2001) NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta 212:175–183

    Article  PubMed  CAS  Google Scholar 

  27. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  28. Córdoba-Pedregosa MdC, Córdoba F, Villalba JM et al (2003) Differential distribution of ascorbic acid, peroxidase activity, and hydrogen peroxide along the root axis in Allium cepa L. and its possible relationship with cell growth and differentiation. Protoplasma 221:57–65

    Article  Google Scholar 

  29. Campestre MP, Bordenave CD, Origone AC et al (2011) Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J Plant Physiol 168:1234–1240

    Article  PubMed  CAS  Google Scholar 

  30. Hong QZ, Copeland L (1991) Isoenzymes of glucose 6-phosphate dehydrogenase from the plant fraction of soybean nodules. Plant Physiol 96:862–867

    Article  PubMed  CAS  Google Scholar 

  31. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  32. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  33. Komagoe K, Takeuchi H, Inoue T, Katsu T (2010) Application of an oxygen electrode to evaluate superoxide anion-scavenging ability. Anal Sci 26:903–906

    Article  PubMed  CAS  Google Scholar 

  34. Morelli R, Russo-Volpe S, Bruno N, Lo Scalzo R (2003) Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars. J Agric Food Chem 51:7418–7425

    Article  PubMed  CAS  Google Scholar 

  35. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  36. Rodríguez AA, Lascano H, Bustos L et al (2007) Salinity-induced reductions in NADPH oxidase activity in the maize leaf blade elongation zone. J Plant Physiol 164:223–230

    Article  PubMed  Google Scholar 

  37. Davenport R, James RA, Zakrisson-Plogander A et al (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  PubMed  CAS  Google Scholar 

  38. Frahry G, Schopfer P (1998) Hydrogen peroxide production by roots and its stimulation by exogenous NADH. Physiol Plant 103:395–404

    Article  CAS  Google Scholar 

  39. Mühling KH, Läuchli A (2002) Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J Plant Physiol 159:137–146

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), and Universidad de San Martin (UNSAM), all from Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith L. Taleisnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rodríguez, A.A., Taleisnik, E.L. (2012). Determination of Reactive Oxygen Species in Salt-Stressed Plant Tissues. In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology, vol 913. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-986-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-986-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-985-3

  • Online ISBN: 978-1-61779-986-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics