Skip to main content

Exploring the Link Between Human Embryonic Stem Cell Organization and Fate Using Tension-Calibrated Extracellular Matrix Functionalized Polyacrylamide Gels

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 916))

Abstract

Human embryonic stem cell (hESc) lines are likely the in vitro equivalent of the pluripotent epiblast. hESc express high levels of the extracellular matrix (ECM) laminin integrin receptor α6β1 and consequently can adhere robustly and be propagated in an undifferentiated state on tissue culture plastic coated with the laminin rich basement membrane preparation, Matrigel, even in the absence of supporting fibroblasts. Such cultures represent a critical step in the development of more defined feeder free cultures of hESc; a goal deemed necessary for regenerative medical applications and have been used as the starting point in some differentiation protocols. However, on standard non-deformable tissue culture plastic hESc either fail or inadequately develop the structural/morphological organization of the epiblast in vivo. By contrast, growth of hESc on appropriately defined mechanically deformable polyacrylamide substrates permits recapitulation of many of these in vivo features. These likely herald differences in the precise nature of the integration of signal transduction pathways from soluble morphogens and represent an unexplored variable in hESc (fate) state space. In this chapter we describe how to establish viable hESc colonies on these functionalized polyacrylamide gels. We suggest this strategy as a prospective in vitro model of the genetics, biochemistry, and cell biology of pre- and early-gastrulation stage human embryos and the permissive and instructive roles that cellular and substrate mechanics might play in early embryonic cell fate decisions. Such knowledge should inform regenerative medical applications aimed at enabling or improving the differentiation of specific cell types from embryonic or induced embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–89

    Article  PubMed  CAS  Google Scholar 

  2. Engler AJ, Humbert PO, Wehrle-Haller B et al (2009) Multiscale modeling of form and function. Science 324:208–12

    Article  PubMed  CAS  Google Scholar 

  3. Cohen DM, Chen CS (2008) Mechanical control of stem cell differentiation. In: The Stem Cell Research Community (ed) StemBook. doi/10.3824/stembook.1.26.1, http://www.stembook.org

  4. Pilot F, Lecuit T (2005) Compartmentalized morphogenesis in epithelia: from cell to tissue shape. Dev Dyn 232:685–94

    Article  PubMed  CAS  Google Scholar 

  5. Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–28

    Article  PubMed  CAS  Google Scholar 

  6. Fernandez-Gonzalez R, Simoes Sde M, Roper JC et al (2009) Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell 17:736–43

    Article  PubMed  CAS  Google Scholar 

  7. Shook DR, Keller R (2008) Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. J Exp Zool B Mol Dev Evol 310:85–110

    Article  PubMed  Google Scholar 

  8. Brouzes E, Farge E (2004) Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr Opin Genet Dev 14:367–74

    Article  PubMed  CAS  Google Scholar 

  9. Brouzes E, Supatto W, Farge E (2004) Is mechano-sensitive expression of twist involved in mesoderm formation? Biol Cell 96:471–7

    Article  PubMed  Google Scholar 

  10. Pouille PA, Ahmadi P, Brunet AC et al (2009) Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci Signal 2:16

    Article  Google Scholar 

  11. Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–9

    Article  PubMed  CAS  Google Scholar 

  12. Krtolica A, Genbacev O, Escobedo C et al (2007) Disruption of apical-basal polarity of human embryonic stem cells enhances hematoendothelial differentiation. Stem Cells 25:2215–23

    Article  PubMed  CAS  Google Scholar 

  13. Xu C, Inokuma MS, Denham J et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–4

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Arman E, Ekblom P et al (2004) Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 131:5277–86

    Article  PubMed  CAS  Google Scholar 

  15. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–42

    Article  PubMed  Google Scholar 

  16. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–54

    Article  PubMed  CAS  Google Scholar 

  17. Solon J, Levental I, Sengupta K et al (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93:4453–61

    Article  PubMed  CAS  Google Scholar 

  18. Yeung T, Georges PC, Flanagan LA et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34

    Article  PubMed  Google Scholar 

  19. Geiger B, Bershadsky A, Pankov R et al (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  PubMed  CAS  Google Scholar 

  20. Nelson CM, Pirone DM, Tan JL et al (2004) Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol Biol Cell 15:2943–53

    Article  PubMed  CAS  Google Scholar 

  21. Liu Z, Tan JL, Cohen DM et al (2010) Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci USA 107:9944–9

    Article  PubMed  CAS  Google Scholar 

  22. Peerani R, Rao BM, Bauwens C et al (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26:4744–55

    Article  PubMed  CAS  Google Scholar 

  23. Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–77

    Article  PubMed  CAS  Google Scholar 

  24. Sawada Y, Tamada M, Dubin-Thaler BJ et al (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–26

    Article  PubMed  CAS  Google Scholar 

  25. Tschumperlin DJ (2004) EGFR autocrine signaling in a compliant interstitial space: mechanotransduction from the outside in. Cell Cycle 3:996–7

    Article  PubMed  CAS  Google Scholar 

  26. Kojic N, Chung E, Kho AT et al (2010) An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. Faseb J 24:1604–15

    Article  PubMed  CAS  Google Scholar 

  27. McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–95

    Article  PubMed  CAS  Google Scholar 

  28. Desprat N, Supatto W, Pouille PA et al (2008) Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 15:470–7

    Article  PubMed  CAS  Google Scholar 

  29. Somogyi K, Rorth P (2004) Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev Cell 7:85–93

    Article  PubMed  CAS  Google Scholar 

  30. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  PubMed  CAS  Google Scholar 

  31. Pless DD, Lee YC, Roseman S et al (1983) Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for ­protein and glycoprotein immobilization. J Biol Chem 258:2340–9

    PubMed  CAS  Google Scholar 

  32. Damljanovic V, Lagerholm BC, Jacobson K (2005) Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell ­mechanotransduction assays. Biotechniques 39:847–51

    Article  PubMed  CAS  Google Scholar 

  33. Saha K, Keung AJ, Irwin EF et al (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–38

    Article  PubMed  CAS  Google Scholar 

  34. Engler AJ, Rehfeldt F, Sen S et al (2007) Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol 83:521–45

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–6

    Article  PubMed  CAS  Google Scholar 

  36. Johnson KE (1976) Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis. J Cell Sci 22:575–83

    PubMed  CAS  Google Scholar 

  37. Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 55:61–75

    Article  Google Scholar 

  38. Harb N, Archer TK, Sato N (2008) The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS One 3:e3001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by internal funding from the Dept of Surgery, UCSF, a CIRM Pilot Grant #RS1-00449-1, and NIH Grants R01CA138818-01A1 and 1U54CA163155-01 to VMW as well as a CIRM Bridges to Stem Cell Research Grant #TB1-01190 awarded to Humbolt State University to fund ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie M. Weaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lakins, J.N., Chin, A.R., Weaver, V.M. (2012). Exploring the Link Between Human Embryonic Stem Cell Organization and Fate Using Tension-Calibrated Extracellular Matrix Functionalized Polyacrylamide Gels. In: Mace, K., Braun, K. (eds) Progenitor Cells. Methods in Molecular Biology, vol 916. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-980-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-980-8_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-979-2

  • Online ISBN: 978-1-61779-980-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics