Skip to main content

How to Approach Perimortem Injury and Other Modifications

  • Protocol
  • First Online:
Forensic Microscopy for Skeletal Tissues

Part of the book series: Methods in Molecular Biology ((MIMB,volume 915))

Abstract

Perimortem damage recorded on bone indicates the immediate processes affecting animals or humans at or near the time of death. In many cases the agents producing the modifications may be identified based on modern comparative studies. Perimortem alterations or injuries may occur as a result of human action, the subject of forensic studies, and it is clearly important to distinguish these from other taphonomic processes and agents. We describe those modifications occurring at the time of death, including linear marks, pits and perforations, rounding of ends of bones, cracking of bone tissues, digestion, discoloration and staining, breakage and fragmentation, and disarticulation, with added notes about later occurring modifications that mimic the perimortem modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Google Scholar 

  2. Shipman P (1981) Applications of scanning electron microscopy to taphonomic problems. Ann N Y Acad Sci 376:357–386

    Article  PubMed  CAS  Google Scholar 

  3. Brain CK (1981) The hunters or the hunted? University of Chicago Press, Chicago

    Google Scholar 

  4. Binford LR (1981) Bones. Ancient men and modern myths. Academic Press, New York

    Google Scholar 

  5. Haglund WD, Sorg MH (eds) (1997) Forensic taphonomy: the postmortem fate of human remains. CRC Press LLC, Boca Raton

    Google Scholar 

  6. Haglund WD, Sorg MH (eds) (2002) Advances in forensic taphonomy: method, theory and archaeological perspectives. CRC Press LLC, Boca Raton

    Google Scholar 

  7. Bromage TG, Boyde A (1984) Microscopic criteria for the determination of directionality of cutmarks on bone. Am J Phys Anthropol 65:357–366

    Article  Google Scholar 

  8. Bromage TG, Bermúdez de Castro JM, Fernández Jalvo Y (1991) The SEM in taphonomy research and its application to studies of cut-marks generally and the determination of handedness specifically. Anthropologie 19:163–169

    Google Scholar 

  9. Shipman P, Rose J (1983) Early hominid hunting, butchering and carcass-processing behaviours: approaches to the fossil record. J Anthrop Archaeol 2:57–98

    Article  Google Scholar 

  10. Olsen SL, Shipman P (1988) Surface modification on bone: trampling versus butchery. J Archaeol Sci 15:535–553

    Article  Google Scholar 

  11. Fernandez-Jalvo Y, Caceres I (2010) Tafonomía e Industria Lítica: marcas de corte y materias primas. En: Rodríguez-Vidal J, Santiago A, y E. Mata (eds). Cuaternario y Arqueología. Homenaje a Francisco Giles Pacheco. Servicio de Publicaciones de Diputación de Cádiz y Servicio de Publicaciones. de Universidad de Cádiz, 169–177.

    Google Scholar 

  12. Andrews P, Fernández-Jalvo Y (1997) Surface modifications of the Sima de los Huesos fossil humans. J Hum Evol 33:191–217

    Article  PubMed  CAS  Google Scholar 

  13. Blumenschine RJ, Selvaggio MM (1988) Percussion marks on bone surfaces as a new diagnostic of hominid behavior. Nature 333:763–765

    Article  Google Scholar 

  14. Blumenschine RJ, Selvaggio MM (1991) On the marks of marrow bone processing by hammerstones and hyaenas: their anatomical patterning and archaeological implications. In: Clark JD (ed) Cultural beginings. Approaches to understanding early hominid life-ways in the African savanna. Bonn, pp 17–32

    Google Scholar 

  15. Cappaldo SD (1997) Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. J Hum Evol 33:555–597

    Article  Google Scholar 

  16. Andrews P, Molleson T, Boz B (2005) The human burials at Çatalhöyük. In: Hodder I (ed) Inhabiting Çatalhöyük: reports from the 1995–1999 seasons. Çatalhöyük Research project Volume 4. McDonald Institute Monographs, British Institute of Archaeology at Ankara, Cambridge, pp 261–278

    Google Scholar 

  17. Andrews P (1990) Owls, cave and fossils. Natural History Museum, London

    Google Scholar 

  18. Brain CK (1967) Bone weathering and the problem of pseudo-tools. S Afr J Sci 63:97–99

    Google Scholar 

  19. Barham LS, Pinto A, Stringer C (2002) Bone tools from Broken Hill (Kabwe) cave, Zambia, and their evolutionary significance. Before Farming 2:1–16

    Google Scholar 

  20. Backwell LR, d’Errico F (2001) Evidence of termite foraging by Swartkrans early hominids. Proc Natl Acad Sci 98:1358–1363

    Article  PubMed  CAS  Google Scholar 

  21. Denys C, Fernández-Jalvo Y, Dauphin Y (1995) Experimental taphonomy: preliminary results of the digestion of micromammal bones in laboratory. CR Acad Sci 321, série II a (Paris):803–809

    Google Scholar 

  22. Fernández-Jalvo Y, Marín Monfort MD (2008) Experimental taphonomy in museums: preparation protocols for skeletons and fossil vertebrates under the scanning electron microscopy. Geobios 41:157–181

    Article  Google Scholar 

  23. Grimm RJ, Whitehouse WM (1963) Pellet formation in a great horned owl. Auk 80:301–306

    Article  Google Scholar 

  24. Raczynski J, Ruprecht AC (1974) The effects of digestion on the osteological composition of owl pellets. Acta Ornithol 14:1–12

    Google Scholar 

  25. Dodson P, Wexlar D (1979) Taphonomic investigation of owl pellets. Paleobiology 5:275–284

    Google Scholar 

  26. Lowe VPW (1980) Variation in digestion of prey by the tawny owl. J Zool 192:283–293

    Article  Google Scholar 

  27. Yalden DW, Yalden PE (1985) An experimental investigation of examining kestrel diet by pellet analysis. Bird Study 32:50–55

    Article  Google Scholar 

  28. Fisher DC (1981) Crocodilian scatology, microvertebrate concentrations and enamel-less teeth. Paleobiology 7:262–275

    Google Scholar 

  29. Williams J (2002) Small mammal deposits in archaeology: a taphonomic investigation of Tyto alba (barn owl) nesting and roosting sites. PhD thesis, University of Sheffield

    Google Scholar 

  30. Fernández Jalvo Y, Andrews P (1992) Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain. J Archaeol Sci 19:407–428

    Article  Google Scholar 

  31. Sutcliffe AJ (1970) Spotted hyaena: crusher, gnawer, digester and collector of bones. Nature 227:1110–1113

    Article  PubMed  CAS  Google Scholar 

  32. Villa P, Mahieu E (1991) Breakage pattern of human long bones. J Hum Evol 21:27–48

    Article  Google Scholar 

  33. Haynes G (1980) Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6:341–351

    Google Scholar 

  34. Haynes G (1982) Utilization and skeletal disturbances of North American prey carcasses. Arctic 35:266–281

    Google Scholar 

  35. White TD (1992) Prehistoric cannibalism at Mancos 5MTUMR-2346. Univiversity Press, Princeton

    Google Scholar 

  36. Hoffman R (1988) The contribution of raptorial birds to patterning in small mammal assemblages. Paleobiology 14:81–90

    Google Scholar 

  37. Toots H (1965) Sequence of disarticulation in mammalian skeletons. Contrib Geol Univ Wyo 4:37–39

    Google Scholar 

  38. Hill A (1979) Butchery and natural disarticulation an investigatory technique. Am Antiq 44:739–744

    Article  Google Scholar 

  39. Hill A, Behrensmeyer AK (1984) Disarticulation patterns of some modern East African mammals. Paleobiology 10:366–376

    Google Scholar 

  40. Speth JD (1983) Bison kills and bone counts. University of Chicago Press, Chicago

    Google Scholar 

  41. Frison GC, Todd LC (1986) The Colby mammoth site. University of New Mexico Press, Albuquerque

    Google Scholar 

  42. Andrews P, Cook J (1985) Natural modifications to bones in a temperate setting. Man 20:675–691

    Article  Google Scholar 

  43. Behrensmeyer AK, Gordon K, Yanagi G (1986) Trampling as cause of bone durface damage and pseudo-cutmarks. Nature 319:768–771

    Article  Google Scholar 

  44. Surcliffe AJ (1973) Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246:428–430

    Article  Google Scholar 

  45. Cáceres I, Esteban-Nadal M, Bennàsar ML, Fernández-Jalvo Y (2009) Disarticulation and dispersal processes of cervid carcass at the Bosque de Riofrío (Segovia, Spain). J Taphonomy 7:129–141

    Google Scholar 

  46. Turner CGII (1983) Cannibalism in Chaco Canyon: the channel pit excavated in 1926 at Small House Ruin by Frank H.H. Roberts, Jr. Am J Phys Anthrop 91:421–439

    Article  Google Scholar 

  47. Pinto Llona AC, Andrews P (1999) Amphibian taphonomy and its application to the fossil record of Dolina (middle Pleistocene, Atapuerca, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 149:411–429

    Article  Google Scholar 

  48. Fernández-Jalvo Y, Andrews P (2003) Experimental effects of water abrasion on bone. J Taphonomy 3:147–163

    Google Scholar 

  49. Pobiner BL, DeSilva J, Sanders WJ, Mitani JC (2007) Taphonomic analysis of skeletal remains from chimpanzee hunts at Ngogo, Kibale National Park, Uganda. J Hum Evol 52:614–636

    Article  PubMed  Google Scholar 

  50. Toth N, Schick K (1993) Early stone industries and inferences regarding language cognition. In: Gibson KG, Ingold T (eds) Tools, language and cognition in human evolution. Cambridge University Press, Cambridge, pp 346–362

    Google Scholar 

  51. Andrews P, Fernández-Jalvo Y (2003) Cannibalism in Britain: taphonomy of the Creswelian (Pleistocene) faunal and human remains from Gough’s Cave (Somerset, England). Bull Nat His Mus Lond (Geology/Palaeontology) 58:59–81

    Google Scholar 

  52. Fernández-Jalvo Y, Díez JC, Cáceres I, Rosell J (1999) Human cannibalism in the early Pleistocene of Southern Europe (Sierra de Atapuerca, Burgos, Spain). J Hum Evol 37:591–622

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Andrews, P., Fernández-Jalvo, Y. (2012). How to Approach Perimortem Injury and Other Modifications. In: Bell, L. (eds) Forensic Microscopy for Skeletal Tissues. Methods in Molecular Biology, vol 915. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-977-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-977-8_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-976-1

  • Online ISBN: 978-1-61779-977-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics