Skip to main content

Production, Purification, and Characterization of scFv TNF Ligand Fusion Proteins

  • Protocol
  • First Online:
Book cover Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

Single-chain variable fragments (scFvs) specific for tumor-associated cell surface antigens are the most broadly used reagents to direct therapeutic or diagnostic effector molecules, such as toxins, radioisotopes, and CD3-stimulating scFvs, to tumors. One novel class of effector molecules that can be targeted to tumors by scFvs are ligands of the tumor necrosis factor (TNF) family. Typically, these molecules have apoptosis inducing and/or immune stimulating properties and are therefore highly attractive for cancer treatment. N-terminal fusion of scFvs does not interfere with the receptor binding capabilities of TNF ligands and thus allows the straightforward generation of scFv TNF ligand fusion proteins. We report here a protocol for the purification of eukaryotically produced scFv TNF ligand fusion proteins based on affinity chromatography on anti-Flag agarose and further describe assays for the determination of the targeting index of this type of scFv-targeted proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  CAS  PubMed  Google Scholar 

  2. Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    Article  CAS  PubMed  Google Scholar 

  3. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B et al (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802

    Article  CAS  PubMed  Google Scholar 

  4. Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U et al (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20:4101–4106

    Article  CAS  PubMed  Google Scholar 

  5. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A et al (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wyzgol A, Muller N, Fick A, Munkel S, Grigoleit GU, Pfizenmaier K et al (2009) Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol 183:1851–1861

    Article  CAS  PubMed  Google Scholar 

  7. Muller N, Wyzgol A, Munkel S, Pfizenmaier K, Wajant H (2008) Activity of soluble OX40 ligand is enhanced by oligomerization and cell surface immobilization. FEBS J 275:2296–2304

    Article  PubMed  Google Scholar 

  8. Bossen C, Cachero TG, Tardivel A, Ingold K, Willen L, Dobles M et al (2008) TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 111:1004–1012

    Article  CAS  PubMed  Google Scholar 

  9. Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F et al (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23:1428–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J et al (2010) Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 285:7394–7404

    Article  CAS  PubMed  Google Scholar 

  11. Haswell LE, Glennie MJ, Al-Shamkhani A (2001) Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol 31:3094–3100

    Article  CAS  PubMed  Google Scholar 

  12. Wajant H, Gerspach J, Pfizenmaier K (2011) Engineering death receptor ligands for cancer therapy. Cancer Lett, in press Jan 13. [Epub ahead of print]

    Google Scholar 

  13. Bremer E, Samplonius D, Kroesen BJ, van Genne L, de Leij L, Helfrich W (2004) Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia 6:636–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH et al (2005) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 65:3380–3388

    CAS  PubMed  Google Scholar 

  15. Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF et al (2005) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280:10025–10033

    Article  CAS  PubMed  Google Scholar 

  16. Stieglmaier J, Bremer E, Kellner C, Liebig TM, ten Cate B, Peipp M et al (2008) Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 57:233–246

    Article  PubMed  Google Scholar 

  17. Samel D, Muller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G et al (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J Biol Chem 278:32077–32082

    Article  CAS  PubMed  Google Scholar 

  18. Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281–290

    Article  CAS  PubMed  Google Scholar 

  19. Bremer E, de Bruyn M, Samplonius DF, Bijma T, ten Cate B, de Leij LF et al (2008) Targeted delivery of a designed sTRAIL mutant results in superior apoptotic activity towards EGFR-positive tumor cells. J Mol Med 86:909–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bremer E, ten Cate B, Samplonius DF, de Leij LF, Helfrich W (2006) CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Blood 107:2863–2870

    Article  CAS  PubMed  Google Scholar 

  21. Bremer E, ten Cate B, Samplonius DF, Mueller N, Wajant H, Stel AJ et al (2008) Superior activity of fusion protein scFvRit:sFasL over cotreatment with rituximab and Fas agonists. Cancer Res 68:597–604

    Article  CAS  PubMed  Google Scholar 

  22. ten Cate B, Bremer E, de Bruyn M, Bijma T, Samplonius D, Schwemmlein M et al (2009) A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia 23:1389–1397

    Article  PubMed  Google Scholar 

  23. Muller D, Frey K, Kontermann RE (2008) A novel antibody-4-1BBL fusion protein for targeted costimulation in cancer immunotherapy. J Immunother 31:714–722

    Article  PubMed  Google Scholar 

  24. Assohou-Luty C, Gerspach J, Siegmund D, Muller N, Huard B, Tiegs G et al (2006) A CD40-CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows membrane CD40L-restricted activation of CD95. J Mol Med 84:785–797

    Article  CAS  PubMed  Google Scholar 

  25. Dranitzki-Elhalel M, Huang JH, Sasson M, Rachmilewitz J, Parnas M, Tykocinski ML (2007) CD40.FasL inhibits human T cells: evidence for an auto-inhibitory loop-back mechanism. Int Immunol 19:355–363

    Article  CAS  PubMed  Google Scholar 

  26. Razmara M, Hilliard B, Ziarani AK, Murali R, Yellayi S, Ghazanfar M et al (2009) Fn14-TRAIL, a chimeric intercellular signal exchanger, attenuates experimental autoimmune encephalomyelitis. Am J Pathol 174:460–474

    Article  CAS  PubMed  Google Scholar 

  27. Elhalel MD, Huang JH, Schmidt W, Rachmilewitz J, Tykocinski ML (2003) CTLA-4. FasL induces alloantigen-specific hyporesponsiveness. J Immunol 170:5842–5850

    CAS  PubMed  Google Scholar 

  28. Huang JH, Tykocinski ML (2001) CTLA-4-Fas ligand functions as a trans signal converter protein in bridging antigen-presenting cells and T cells. Int Immunol 13:529–539

    Article  CAS  PubMed  Google Scholar 

  29. Orbach A, Rachmilewitz J, Parnas M, Huang JH, Tykocinski ML, Dranitzki-Elhalel M (2007) CTLA-4. FasL induces early apoptosis of activated T cells by interfering with anti-apoptotic signals. J Immunol 179:7287–7294

    CAS  PubMed  Google Scholar 

  30. Berg D, Lehne M, Muller N, Siegmund D, Munkel S, Sebald W et al (2007) Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ 14:2021–2034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Wajant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fick, A., Wyzgol, A., Wajant, H. (2012). Production, Purification, and Characterization of scFv TNF Ligand Fusion Proteins. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics