Skip to main content

Computer-Assisted Modeling of Antibody Variable Domains

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

Antibody modeling is an interesting option to gain structure–function insights and to allow rational engineering of these molecules in the absence of experimental data. Among a diversity of algorithms, software packages, and specialized Web servers, the protocol described here presents the following main features: (1) nonautomatic modeling process guided by direct application of antibody modeling principles; (2) local generation of molecular models using free software which can be used in most common operational systems; and (3) the resulting model quality is comparable to models generated by Web servers which represent the current standard of antibody modeling. Briefly, hybrid models of heavy- and light-chain variable domains are separately built by grafting segments from homologous templates (framework regions and complementarity-determining regions). Next, hybrid models are mutated to comply with the target’s sequence and associated by fitting into a template structure that closely matches the predicted packing angle for the target variable domains. After a few cycles of energy minimization the model can be submitted to CDR-H3 optimization or its quality can be directly assessed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

VD:

Variable domain

FR:

Framework region

CDR:

Complementarity-determining region

HV:

Antibody heavy-chain variable domain

LV:

Antibody light-chain variable domain

References

  1. Whitelegg NR, Rees AR (2000) Wam: an improved algorithm for modelling antibodies on the web. Protein Eng 13:819–824

    Article  CAS  PubMed  Google Scholar 

  2. Sircar A, Kim ET, Gray JJ (2009) Rosettaantibody: antibody variable region homology modeling server. Nucleic Acids Res 37:W474–W479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Marcatili P, Rosi A, Tramontano A (2008) Pigs: automatic prediction of antibody structures. Bioinformatics 24:1953–1954

    Article  CAS  PubMed  Google Scholar 

  4. Kabat EA, Wu TT (1991) Identical v region amino acid sequences and segments of sequences in antibodies of different specificities. relative contributions of vh and vl genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147:1709–1719

    CAS  PubMed  Google Scholar 

  5. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  CAS  PubMed  Google Scholar 

  6. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948

    Article  CAS  PubMed  Google Scholar 

  7. Abhinandan KR, Martin ACR (2008) Analysis and improvements to kabat and structurally correct numbering of antibody variable domains. Mol Immunol 45:3832–3839

    Article  CAS  PubMed  Google Scholar 

  8. Honegger A, Plückthun A (2001) Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657–670

    Article  CAS  PubMed  Google Scholar 

  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  10. Guex N, Peitsch MC (1997) Swiss-model and the swiss-pdbviewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  11. Abhinandan KR, Martin ACR (2010) Analysis and prediction of vh/vl packing in antibodies. Protein Eng Des Sel 23:689–697

    Article  CAS  PubMed  Google Scholar 

  12. Canutescu AA, Dunbrack RLJ (2003) Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 12:963–972

    Article  CAS  PubMed  Google Scholar 

  13. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: what the rosetta protein modeling suite can do for you. Biochemistry 49:2987–2998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  16. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with namd. J Comput Chem 26:1781–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) Charmm: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Martin AC, Cheetham JC, Rees AR (1989) Modeling antibody hypervariable loops: a combined algorithm. Proc Natl Acad Sci U S A 86:9268–9272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bruccoleri RE, Karplus M (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26:137–168

    Article  CAS  PubMed  Google Scholar 

  20. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  PubMed  Google Scholar 

  21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  22. Vriend G (1990) What if: a molecular modeling and drug design program. J Mol Graph 8(52–6):29

    Google Scholar 

  23. Schrödinger L The pymol molecular graphics system

    Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) Vmd: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  25. Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM (1998) Conformations of the third hypervariable region in the vh domain of immunoglobulins. J Mol Biol 275:269–294

    Article  CAS  PubMed  Google Scholar 

  26. Shirai H, Kidera A, Nakamura H (1996) Structural classification of cdr-h3 in antibodies. FEBS Lett 399:1–8

    Article  CAS  PubMed  Google Scholar 

  27. Kuroda D, Shirai H, Kobori M, Nakamura H (2008) Structural classification of cdr-h3 revisited: a lesson in antibody modeling. Proteins 73:608–620

    Article  CAS  PubMed  Google Scholar 

  28. Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-resolution homology modeling of antibody fv regions and application to antibody-antigen docking. Proteins 74:497–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Martin AC, Thornton JM (1996) Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol 263:800–815

    Article  CAS  PubMed  Google Scholar 

  30. Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR et al (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877–883

    Article  CAS  PubMed  Google Scholar 

  31. Barré S, Greenberg AS, Flajnik MF, Chothia C (1994) Structural conservation of hypervariable regions in immunoglobulins evolution. Nat Struct Biol 1:915–920

    Article  PubMed  Google Scholar 

  32. Tomlinson IM, Cox JP, Gherardi E, Lesk AM, Chothia C (1995) The structural repertoire of the human v kappa domain. EMBO J 14:4628–4638

    CAS  PubMed  Google Scholar 

  33. Chothia C, Lesk AM, Gherardi E, Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G (1992) Structural repertoire of the human vh segments. J Mol Biol 227:799–817

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar H. P. Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramos, O.H.P. (2012). Computer-Assisted Modeling of Antibody Variable Domains. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics