Skip to main content

Media Composition: Macromolecules and Embryo Growth

  • Protocol
  • First Online:
Book cover Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

Most embryo culture media are still supplemented with proteins rather than with nonprotein macromolecules or recombinant protein products. HSA is probably the most common supplement followed by globulin-enriched preparations. Serum supplementation and Co-Culture of embryos belong to the past. Defined nonprotein or recombinant protein supplements are becoming a viable alternative during gamete and embryo manipulation procedures. Biological protein supplements are still preferred for any extended period of embryo culture. Understanding the goals and purpose of supplemented macromolecules in embryo culture media during each step of the laboratory IVF process should assist us in choosing the safest and most consistent macromolecule for each step, but also selecting a product that has the capability of delivering the best clinical outcome. Each batch of biological protein supplement is unique, even if supplied by the same manufacturer. Each lot of protein supplement typically contains many lot-specific, potentially harmful, and unintended hormone and protein contaminants. Macromolecular embryo culture medium supplements should be identified as one of the highest risk factors in an IVF laboratory that may contribute towards clinical compromise. All efforts should be made to use a proven batch of supplement for as long as the expiration date will allow. The beneficial effect of more complex protein supplements is evident after the activation of the embryonic genome and probably due to the presence of growth factors. Lower live-birth rates due to suboptimum protein supplementation may be a direct result of the preferential loss of female embryos. When deciding on a culture system, thought should be given specifically to the interaction between the culture medium and the macromolecular supplement. Ready-to-use pre-supplemented culture media may be advisable over a more complex product if a comprehensive macromolecular quality management program is not feasible. However, the question remains as to whether the increasing simplification of embryo culture media supplements is ready for large-scale clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2(8085):366

    Article  PubMed  CAS  Google Scholar 

  2. Rock J, Menkin MF (1944) In vitro fertilization and cleavage of human ovarian eggs. Science 100(2588):105–107

    Article  PubMed  CAS  Google Scholar 

  3. McLaughlin L (1982) The Pill, John Rock and the Church. A biography of a revolution, 1st edn. Little, Brown and Company, Boston

    Google Scholar 

  4. Steptoe PC, Edwards RG, Purdy JM (1971) Human blastocysts grown in culture. Nature 229(5280):132–133

    Article  PubMed  CAS  Google Scholar 

  5. Dokras A, Sargent IL, Redman CWG (1993) Sera from woman with unexplained infertility inhibit both mouse and human embryo growth in vitro. Fertil Steril 60:285–292

    PubMed  CAS  Google Scholar 

  6. Kemeter P, Feightinger W (1984) Pregnancy following in vitro fertilization and embryo transfer using pure human serum as culture and transfer medium. Fertil Steril 41(6):936–937

    PubMed  CAS  Google Scholar 

  7. Staessen C, Van Den Abbeel E, Carle M et al (1990) Comparison between human serum and Albuminar-20™ supplement for in vitro fertilization. Hum Reprod 5(3):336–341

    PubMed  CAS  Google Scholar 

  8. Leveille MC, Carnegie J, Tanphaichitr N (1992) Effects of human sera and human serum albumin on mouse embryo culture. J Assist Reprod Genet 9(1):45–52

    Article  PubMed  CAS  Google Scholar 

  9. Weathersbee PS, Pool TB, Ord T (1995) Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J Assist Reprod Genet 12(6):354–360

    Article  PubMed  CAS  Google Scholar 

  10. Pool TB (2004) Development of culture media for human assisted reproductive technology. Fertil Steril 81:287–289

    Article  PubMed  Google Scholar 

  11. Alberda AT, Van Os HC, Zeilmaker GH (1989) Hepatitis B virus infectie bij vrouwen behandeld met in vitro fertilisatie. Neederlands Tijdskrift Voor Geneeskunde 133:20–25

    CAS  Google Scholar 

  12. Klein R, Dumble LJ (1993) Transmission of Creutzfeldt-Jakob disease by blood transfusion. Lancet 341:768

    Article  PubMed  CAS  Google Scholar 

  13. Otani T, McDonough PG (1995) Earthquakes and prions. Fertil Steril 63:1137–1139

    PubMed  CAS  Google Scholar 

  14. Wiemer KE, Cohen J, Amborskir GF et al (1989) In-vitro development and implantation of human embryos following culture on fetal bovine uterine fibroblast cells. Hum Reprod 4(5):595–600

    PubMed  CAS  Google Scholar 

  15. Bongso A, Ng SC, Ratnam S (1990) Co-cultures: their relevance to assisted reproduction. Hum Reprod 5(8):893–900

    PubMed  CAS  Google Scholar 

  16. Wiemer KE, Hoffman DI, Maxson WS et al (1993) Embryonic morphology and rate of implantation of human embryos following co-culture on bovine oviductal epithelial cells. Hum Reprod 8(1):97–101

    PubMed  CAS  Google Scholar 

  17. Ménézo YJR, Sakkas D, Janny L (1995) Co-culture of the early human embryo: factors affecting human blastocyst formation in vitro. Microsc Res Tech 52(1):50–56

    Article  Google Scholar 

  18. Rieger D, Grisart B, Semple E et al (1995) Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J Reprod Fertil 105:91–98

    Article  PubMed  CAS  Google Scholar 

  19. Forsdahl F, Bertheussen K, Bungum LJ et al (1994) A study on extended culture time with embryo replacement at the morula and blastocyst stage. Hum Reprod 9:142–143

    Google Scholar 

  20. Barnes FL, Crombie A, Gardner DK et al (1995) Blastocyst development and pregnancy after in vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod 10:3243–3247

    PubMed  CAS  Google Scholar 

  21. Behr B, Pool TB, Milki A et al (1999) Preliminary clinical experience with human blastocyst development in vitro without co-culture. Hum Reprod 14(2):454–457

    Article  PubMed  CAS  Google Scholar 

  22. Dugan KJ, Shalika S, Smith RD et al (1997) Comparison of synthetic serum substitute and fetal cord serum as media supplements for in vitro fertilization: a prospective, randomized study. Fertil Steril 67(1):166–168

    Article  PubMed  CAS  Google Scholar 

  23. Laverge H, De Sutter P, Desmet R, et al (1997) Prospective randomized study comparing human serum albumin with fetal cord serum as protein supplement in culture medium for in-vitro fertilization (IVF). Hum Reprod 12 (10):2263–2266

    Article  PubMed  CAS  Google Scholar 

  24. Tucker KE, Hurst BS, Guadagnoli S et al (1996) Evaluation of synthetic serum substitute versus serum as protein supplementation for mouse and human embryo culture. J Assist Reprod Genet 13(1):32–37

    Article  PubMed  CAS  Google Scholar 

  25. Blake D, Svalander P, Jin M et al (2002) Protein supplementation of human IVF culture media. J Assist Reprod Genet 19(3):137–143

    Article  PubMed  Google Scholar 

  26. Bungum M, Humaidan P, Bungum L (2002) Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online 4(3):233–236

    Article  PubMed  CAS  Google Scholar 

  27. Takenaka M, Horiuchi T (2007) Recombinant human albumin supports mouse blastocyst development and improves fetal development. Reprod Med Biol 6(4):195–201

    Article  CAS  Google Scholar 

  28. Gardner DK, Lane M (1998) Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod 13(Suppl 3):148–159

    Article  PubMed  Google Scholar 

  29. Ali J, Shahata MA, Al-Natsha SD (2000) Formulation of a protein-free medium for human assisted reproduction. Hum Reprod 15(1):145–156

    Article  PubMed  CAS  Google Scholar 

  30. Friedler S, Schachter M, Strassburger D et al (2007) A randomized clinical trial comparing recombinant hyaluronan/recombinant albumin versus human tubal fluid for cleavage stage embryo transfer in patients with multiple IVF-embryo transfer failure. Hum Reprod 22(9):2444–2448

    Article  PubMed  CAS  Google Scholar 

  31. Simon A, Safran A, Revel A et al (2003) hyaluronic acid can successfully replace albumin as the sole macromolecule in a human embryo transfer medium. Fertil Steril 79(6):1434–1438

    Article  PubMed  Google Scholar 

  32. Tanikawa T, Harada T, Ito M et al (1999) Globulins in protein supplements promote the development of preimplantation embryos. J Assist Reprod Genet 16:555–557

    Article  PubMed  CAS  Google Scholar 

  33. Meintjes M, Chantilis SJ, Ward DC et al (2009) A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod 24(4):782–789

    Article  PubMed  CAS  Google Scholar 

  34. Richter KS (2008) The importance of growth factors for preimplantation embryo development and in vitro culture. Curr Opin Obstet Gynecol 20(3):292–304

    Article  PubMed  Google Scholar 

  35. Behboodi E, Anderson GB, BonDurant RH et al (1994) Birth of large calves that developed from in-vitro derived bovine embryos. Theriogenology 44:227–232

    Article  Google Scholar 

  36. Hardy K, Spanos S (2002) Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol 172:221–236

    Article  PubMed  CAS  Google Scholar 

  37. Lane M, Hooper K, Gardner DK (2001) Effect of essential amino acids on mouse embryo viability and ammonium production. J Assist Reprod Genet 18:519–525

    Article  PubMed  CAS  Google Scholar 

  38. Alvarez JG, Storey BT (1995) Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev 42:334–346

    Article  PubMed  CAS  Google Scholar 

  39. Hambiliki F, Ljunger E, Olof Karlström P et al (2009) Hyaluronan-enriched transfer medium in cleavage-stage frozen-thawed embryo transfers increases implantation rate without improvement of delivery rate. Fertil Steril 94(5):1669–1673

    Article  PubMed  Google Scholar 

  40. Graham MC, Partridge AB, Lewis V et al (1995) A prospective comparison of synthetic serum substitute and human serum albumin in culture for in vitro fertilization-embryo transfer. Fertil Steril 64(5):1036–1038

    PubMed  CAS  Google Scholar 

  41. Rienzi L, Ubaldi F, Anniballo R et al (1998) Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod 13(4):1014–1019

    Article  PubMed  CAS  Google Scholar 

  42. Ho JY, Chen MJ, Yi YC et al (2003) The effect of preincubation period of oocytes on nuclear maturity, fertilization rate, embryo quality and pregnancy outcome in IVF and ICSI. J Assist Reprod Genet 20(9):358–364

    Article  PubMed  Google Scholar 

  43. Guerif F, Cadoret V, Poindron J et al (2003) Overnight incubation improves selection of frozen-thawed blastocysts for transfer: preliminary study using supernumary embryos. Theriogenology 60(8):1457–1466

    Article  PubMed  Google Scholar 

  44. Gorrill MJ, Rinehart JS, Tamhane AC et al (1991) Comparison of the hamster sperm motility assay to the mouse one-cell and two-cell embryo bioassays as quality control tests for in vitro fertilization. Fertil Steril 55(2):345–354

    PubMed  CAS  Google Scholar 

  45. Claasens OE, Harrison KL (1999) Optimizing sensitivity of human sperm motility assay for embryology toxicity testing. In: Proceedings of the 11 th world congress on IVF and human reproductive genetics. Sydney, Australia

    Google Scholar 

  46. Pemble LB, Kaye PL (1976) Whole protein uptake and metabolism by mouse blastocysts. J Reprod Fertil 78:149–157

    Google Scholar 

  47. O’Neil C (2005) The role of PAF in embryo physiology. Hum Reprod Update 11(3):215–228

    Article  Google Scholar 

  48. Ammit AJ, O’Neill C (1997) Studies of the nature of the binding by albumin of platelet-activating factor released from cells. J Biol Chem 272:18772–18778

    Article  PubMed  CAS  Google Scholar 

  49. O’Neil C (1997) Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod 56:229–237

    Article  Google Scholar 

  50. Paria BC, Dey SK (1990) Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA 87(12):4756–4760

    Article  PubMed  CAS  Google Scholar 

  51. Hink JH, Hidalgo J, Seeberg VP et al (1957) Preparation and properties of a heat-treated human plasma protein fraction. Vox Sanguinis 2(3):174–186

    Article  PubMed  CAS  Google Scholar 

  52. Ben-Yosef D, Yovel I, Schwartz T et al (2001) Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study. J Assist Reprod Genet 18(11):588–592

    Article  PubMed  CAS  Google Scholar 

  53. Mosley AK, Brouwer KL (1997) Heat treatment of human serum to inactivate HIV does not alter protein binding of selected drugs. Ther Drug Monit 19:477–479

    Article  PubMed  CAS  Google Scholar 

  54. Snyman E, Van der Merwe JV (1986) Endotoxin-polluted medium in a human in vitro fertilization program. J In Vitro Fertil Embryo Transfer 5:335–342

    Google Scholar 

  55. Mahani IM, Davar R (2007) Hyaluronic acid versus albumin in human embryo transfer medium. East Mediterr Health J 13(4):876–880

    PubMed  CAS  Google Scholar 

  56. Gray CW, Morgan PM, Kane MT (1992) Purification of an embryotrophic factor from commercial bovine serum albumin and its identification s citrate. J Reprod Fertil 94:471–480

    Article  PubMed  CAS  Google Scholar 

  57. Fishel S, Jackson P, Webster J et al (1988) Endotoxins in culture medium for human in vitro fertilization. Fertil Steril 49:108–111

    PubMed  CAS  Google Scholar 

  58. Nagata Y, Shirakawa K (1996) Setting standards for the levels of endotoxin in the embryo culture media of human in vitro fertilization and embryo transfer. Fertil Steril 65:614–619

    PubMed  CAS  Google Scholar 

  59. Kimura K, Spate LD, Green MP et al (2005) Effects of d-glucose concentration, d-fructose, and inhibitors of enzymes of the pentose phosphate pathway on the development and sex ratio of bovine blastocysts. Mol Reprod Dev 72:201–207

    Article  PubMed  CAS  Google Scholar 

  60. Chang HJ, Lee JR, Jee BC et al (2009) Impact of blastocyst transfer on offspring sex ratio and the monozygotic twinning rate: a systematic review and meta-analysis. Fertil Steril 91(6):2381–2390

    Article  PubMed  Google Scholar 

  61. Bermejo-Alvarez P, Rizos D, Lonergan P et al (2011) Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 141:563–570

    Article  PubMed  CAS  Google Scholar 

  62. Gutierrez-Adan A, Perez-Crispo M, Fernandez-Gonzalez R et al (2006) Developmental consequences of sexual dimorphism during preimplantation embryonic development. Reprod Domest Anim 41(Suppl 2):54–62

    Article  PubMed  Google Scholar 

  63. Holm P, Walker SK, Seamark RF (1996) Embryo viability, duration of gestation and birth weight in sheep after transfer of in vitro matured and in vitro fertilized zygotes cultured in vitro or in vivo. J Reprod Fertil 107:175–181

    Article  PubMed  CAS  Google Scholar 

  64. Pool TB, Martin JE (1994) High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing α and β globulins. Fertil Steril 61:714–719

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the dedicated physicians, embryologists, nurses, and administrative personnel working in our program who are always willing to support new studies and investigational endeavors. I gratefully acknowledge Vitrolife Inc. (Inglewood, Colorado) for their sponsorship and technical support of several investigations and studies in our quest to continually improve culture conditions and embryo culture medium formulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Meintjes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Meintjes, M. (2012). Media Composition: Macromolecules and Embryo Growth. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics