Skip to main content

Culture Systems: Low-Oxygen Culture

  • Protocol
  • First Online:
Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

The tension of oxygen measured in the oviducts of several mammals was 5–8.7 %, but this drops in the uterine milieu to <2 % in cows and primates. For embryo culture in human in vitro fertilization (IVF), a non-physiologic level of 20 % oxygen has been used for the past 30 years. However, several animal studies have shown that low levels of oxygen plays an important physiological role in reducing the high levels of detrimental reactive oxygen species within cells, influences the embryonic gene expression, helps with embryo metabolism of glucose, and enhances embryo development to blastocysts. However, clinical studies have given contradictory results. Nevertheless, in nearly all reports, some kind of improvement has been observed, either in embryo development or in implantation and no detriments have been reported. For these reasons, more and more IVF laboratories utilize low oxygen during embryo culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99:673–679

    PubMed  CAS  Google Scholar 

  2. Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1:63–72

    PubMed  CAS  Google Scholar 

  3. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ (1996) Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106:299–306

    PubMed  CAS  Google Scholar 

  4. Jauniaux E, Gulbis B, Burton GJ (2003) Physiological implications of the materno-­fetal oxygen gradient in human early pregnancy. Reprod Biomed Online 7:250–253

    PubMed  Google Scholar 

  5. Yedwab GA, Paz G, Homonnai TZ, David MP, Kraicer PF (1976) The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertil Steril 27:304–309

    PubMed  CAS  Google Scholar 

  6. Ottosen LD, Hindkaer J, Husth M, Petersen DE, Kirk J, Ingerslev HJ (2006) Observations on intrauterine oxygen tension measured by fibre-optic microsensors. Reprod Biomed Online 13:380–385

    PubMed  Google Scholar 

  7. Van Blerkom J, Antczak M, Schrader R (1997) The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 12:1047–1055

    PubMed  Google Scholar 

  8. Knudsen JF, Litkowski LJ, Wilson TL, Guthrie HD, Batta SK (1978) Concentrations of hydrogen ions, oxygen, carbon dioxide and bicarbonate in porcine follicular fluid. J Endocrinol 79:249–250

    PubMed  CAS  Google Scholar 

  9. Shalgi R, Kraicer PF, Sofermanm N (1972) Gases and electrolytes of human follicular fluid. J Reprod Fertil 28:335–340

    PubMed  CAS  Google Scholar 

  10. Gosden RG, Byatt-Smith JG (1986) Oxygen concentration gradient across the ovarian follicular epithelium: model, predictions and implications. Hum Reprod 1:65–68

    PubMed  CAS  Google Scholar 

  11. Clark AR, Stokes YM, Lane M, Thompson JG (2006) Mathematical modelling of oxygen concentration in bovine and murine cumulus–oocyte complexes. Reproduction 131:999–1006

    PubMed  CAS  Google Scholar 

  12. Martin KL (2000) Nutritional and metabolic requirements of early cleavage stage embryos and blastocysts. Hum Fertil (Camb) 3:247–254

    Google Scholar 

  13. Thompson JG, Sherman ANM, Allen NW, McGowan LT, Tervit HR (1998) Total protein content and protein synthesis within pre-elongation stage bovine embryos. Mol Reprod Dev 50:139–145

    PubMed  CAS  Google Scholar 

  14. Byatt-Smith JG, Leese HJ, Gosden RG (1991) An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod 6:52–57

    PubMed  CAS  Google Scholar 

  15. Feil D, Lane M, Roberts CT, Kelley RL, Edwards LJ, Thompson JG, Kind KL (2006) Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol 572:87–96

    PubMed  CAS  Google Scholar 

  16. Kind KL, Collett RA, Harvey AJ, Thompson JG (2005) Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol Reprod Dev 70:37–44

    PubMed  CAS  Google Scholar 

  17. Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR (2000) Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 118:47–55

    PubMed  CAS  Google Scholar 

  18. Baltz JM, Biggers JD (1991) Oxygen transport to embryos in microdrop cultures. Mol Reprod Dev 28:351–355

    PubMed  CAS  Google Scholar 

  19. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL (2000) Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod 62:1866–1874

    PubMed  CAS  Google Scholar 

  20. Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18

    PubMed  CAS  Google Scholar 

  21. Scott L, Berntsen J, Davies D, Gundersen J, Hill J, Ramsing N (2008) Human oocyte respiration-rate measurement—potential to improve oocyte and embryo selection? RBM Online 17:461–469

    PubMed  Google Scholar 

  22. Lopes AS, Larsen LH, Ramsing N, Lovendahl P, Raty M, Peippo J, Greve T, Callesen H (2005) Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system. Reproduction 130:669–679

    PubMed  CAS  Google Scholar 

  23. Lopes AS, Madsen SE, Ramsing NB, Løvendahl P, Greve T, Callesen H (2007) Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Hum Reprod 22:558–566

    PubMed  CAS  Google Scholar 

  24. Lopes AS, Lane M, Thompson JG (2010) Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod 25:2762–2773

    PubMed  CAS  Google Scholar 

  25. Guerin P, El Mouatassim S, Menezo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 7:175–189

    PubMed  CAS  Google Scholar 

  26. Bielski BH, Arudi RL (1983) Preparation and stabilization of aqueous/ethanolic superoxide solutions. Anal Biochem 133:170–178

    PubMed  CAS  Google Scholar 

  27. Martín-Romero FJ, Miguel-Lasobras EM, Domínguez-Arroyo JA, González-Carrera E, Alvarez IS (2008) Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online 17:652–661

    PubMed  Google Scholar 

  28. Grzelak A, Rychlik B, Bartosz G (2001) Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med 30:1418–1425

    PubMed  CAS  Google Scholar 

  29. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    PubMed  CAS  Google Scholar 

  30. Batty E, Jensen K, Freemont P (2009) PML nuclear bodies and their spatial relationships in the mammalian cell nucleus. Front Biosci 14:1182–1196

    PubMed  CAS  Google Scholar 

  31. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  32. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    PubMed  CAS  Google Scholar 

  33. Tappel AL (1980) Vitamin E and selenium protection from in vivo lipid peroxidation. Ann N Y Acad Sci 355:18–31

    PubMed  CAS  Google Scholar 

  34. Nasr-Esfahani M, Johnson MH, Aitken RJ (1990) The effect of iron and iron chelators on the in-vitro block to development of the mouse preimplantation embryo: BAT6 a new medium for improved culture of mouse embryos in vitro. Hum Reprod 5:997–1003

    PubMed  CAS  Google Scholar 

  35. Orrenius S, Burkitt MJ, Kass GE, Dypbukt JM, Nicotera P (1992) Calcium ions and oxidative cell injury. Ann Neurol 32(Suppl):S33–42

    PubMed  CAS  Google Scholar 

  36. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–185

    PubMed  CAS  Google Scholar 

  37. Tarín JJ (1996) Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod 2:717–724

    PubMed  Google Scholar 

  38. Kwon HC, Yang HW, Hwang KJ, Yoo JH, Kim MS, Lee CH, Ryu HS, Oh KS (1999) Effects of low oxygen condition on the generation of reactive oxygen species and the development in mouse embryos cultured in vitro. J Obstet Gynaecol Res 25:359–366

    PubMed  CAS  Google Scholar 

  39. Salgo MG, Stone K, Squadrito GL, Battista JR, Pryor WA (1995) Peroxynitrite causes DNA nicks in plasmid pBR322. Biochem Biophys Res Commun 210:1025–1030

    PubMed  CAS  Google Scholar 

  40. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404(6773):37–41

    PubMed  CAS  Google Scholar 

  41. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    PubMed  CAS  Google Scholar 

  42. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:102–123

    Google Scholar 

  43. Johnson MH, Nasr-Esfahani MH (1994) Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 16:31–38

    PubMed  CAS  Google Scholar 

  44. Blondin P, Coenen K, Sirard MA (1997) The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J Androl 18:454–460

    PubMed  CAS  Google Scholar 

  45. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KV, Oh KS (1998) Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 13:998–1002

    PubMed  CAS  Google Scholar 

  46. Pierce GB, Parchment RE, Lewellyn AL (1991) Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 46:181–186

    PubMed  CAS  Google Scholar 

  47. Harvey AJ, Kind KL, Thompson JG (2002) REDOX regulation of early embryo development. Reproduction 123:479–486

    PubMed  CAS  Google Scholar 

  48. Morales H, Tilquin P, Rees JF, Massip A, Dessy F, Van Langendonckt A (1999) Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol Reprod Dev 52:149–157

    PubMed  CAS  Google Scholar 

  49. Thomas M, Jain S, Kumar GP, Laloraya M (1997) A programmed oxyradical burst causes hatching of mouse blastocysts. J Cell Sci 110:1597–1602

    PubMed  CAS  Google Scholar 

  50. Nasr-Esfahani MM, Johnson MH (1991) The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 113:551–560

    PubMed  CAS  Google Scholar 

  51. El Mouatassim S, Guerin P, Menezo Y (1999) Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 5:720–725

    PubMed  CAS  Google Scholar 

  52. Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112

    PubMed  CAS  Google Scholar 

  53. Catt J, Henman M (2000) Toxic effects of oxygen on human embryo development. Hum Reprod 15(Suppl 2):199–206

    PubMed  Google Scholar 

  54. Enkhmaa D, Kasai T, Hoshi K (2009) Long-time exposure of mouse embryos to the sperm produces high levels of reactive oxygen species in culture medium and relates to poor embryo development. Reprod Domest Anim 44:634–637

    PubMed  CAS  Google Scholar 

  55. Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT (1999) Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 71:836–842

    PubMed  CAS  Google Scholar 

  56. Otsuki J, Nagai Y, Chiba K (2007) Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development. Fertil Steril 88:741–743

    PubMed  CAS  Google Scholar 

  57. Nakayama T, Noda Y, Goto Y, Mori T (1994) Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology 41:499–510

    PubMed  CAS  Google Scholar 

  58. Goto Y, Noda Y, Mori T, Nakano M (1993) Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radical Biol Med 15:69–75

    CAS  Google Scholar 

  59. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T (2004) Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62:1186–1197

    PubMed  CAS  Google Scholar 

  60. Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N (2000) Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol Reprod Dev 57:353–360

    PubMed  CAS  Google Scholar 

  61. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM (2006) Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril 86(4 Suppl):1252–1265

    PubMed  CAS  Google Scholar 

  62. Harvey AJ, Kind KL, Thompson JG (2007) Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine. Biol Reprod 77:93–101

    PubMed  CAS  Google Scholar 

  63. Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53

    PubMed  CAS  Google Scholar 

  64. Quinn P, Harlow GM (1978) The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool 206:73–80

    PubMed  CAS  Google Scholar 

  65. Thompson JG, Simpson AC, Pugh PA, Donnelley PE, Tervit HR (1990) Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil 89:573–578

    PubMed  CAS  Google Scholar 

  66. Pabon JE, Findley WE, Gibbons WE (1989) The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril 51:896–900

    PubMed  Google Scholar 

  67. Umaoka Y, Noda Y, Narimoto K, Mori T (1992) Effects of oxygen toxicity on early development of mouse embryos. Mol Reprod Dev 31:28–33

    PubMed  CAS  Google Scholar 

  68. Wale PL, Gardner DK (2010) Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod Biomed Online 21:402–410

    PubMed  CAS  Google Scholar 

  69. McKiernan SH, Bavister BD (1990) Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol Reprod 43:404–413

    PubMed  CAS  Google Scholar 

  70. Kishi J, Noda Y, Narimoto K, Umaoka Y, Mori T (1991) Block to development in cultured rat 1-cell embryos is overcome using medium HECM-1. Hum Reprod 6:1445–1448

    PubMed  CAS  Google Scholar 

  71. Li J, Foote RH, Simkin M (1993) Development of rabbit zygotes cultured in protein-free medium with catalase, taurine, or superoxide dismutase. Biol Reprod 49:33–37

    PubMed  CAS  Google Scholar 

  72. Fukui Y, McGowan LT, James RW, Pugh PA, Tervit HR (1991) Factors affecting the in-vitro development to blastocysts of bovine oocytes matured and fertilized in vitro. J Reprod Fertil 92:125–131

    PubMed  CAS  Google Scholar 

  73. Takahashi Y, Kanagawa H (1998) Effect of oxygen concentration in the gas atmosphere during in vitro insemination of bovine oocytes on the subsequent embryonic development in vitro. J Vet Med Sci 60:365–367

    PubMed  CAS  Google Scholar 

  74. Olson SE, Seidel GE (2000) Reduced oxygen tension and EDTA improve bovine zygote development in a chemically defined medium. J Anim Sci 78:152–157

    PubMed  CAS  Google Scholar 

  75. Van Soom A, Yuan YQ, Peelman LJ, de Matos DG, Dewulf J, Laevens H, de Kruif A (2002) Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology 57:1453–1465

    PubMed  Google Scholar 

  76. Higdon HL 3rd, Blackhurst DW, Boone WR (2008) Incubator management in an assisted reproductive technology laboratory. Fertil Steril 89:703–710

    PubMed  Google Scholar 

  77. Batt PA, Gardner DK, Cameron AW (1991) Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod Fertil Dev 3:601–607

    PubMed  CAS  Google Scholar 

  78. Yuan YQ, Van Soom A, Coopman FO, Mintiens K, Boerjan ML, Van Zeveren A, de Kruif A, Peelman LJ (2003) Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59:1585–1596

    PubMed  CAS  Google Scholar 

  79. Lequarre AS, Marchandise J, Moreau B, Massip A, Donnay I (2003) Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition. Biol Reprod 69:1707–1713

    PubMed  CAS  Google Scholar 

  80. Bean CJ, Hassold TJ, Judis L, Hunt PA (2002) Fertilization in vitro increases non-disjunction during early cleavage divisions in a mouse model system. Hum Reprod 17:2362–2367

    PubMed  Google Scholar 

  81. Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG (2004) Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod 71:1108–1119

    PubMed  CAS  Google Scholar 

  82. Enders AC, Boatman D, Morgan P, Bavister BD (1989) Differentiation of blastocysts derived from in vitro-fertilized rhesus monkey ova. Biol Reprod 41:715–727

    PubMed  CAS  Google Scholar 

  83. Nasr-Esfahani MH, Winston NJ, Johnson MH (1992) Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil 96:219–231

    PubMed  CAS  Google Scholar 

  84. Johnston LA, Donoghue AM, O’Brien SJ, Bildt DE (1991) Influence of temperature and gas atmosphere on in-vitro fertilization and embryo development in domestic cats. J Reprod Fertil 92:377–382

    PubMed  CAS  Google Scholar 

  85. Betterbed B, Wright RW Jr (1985) Development of one-cell ovine embryos in two culture media under two gas atmospheres. Theriogenology 23:547–53

    PubMed  CAS  Google Scholar 

  86. Khurana NK, Niemann H (2000) Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology 54:741–756

    PubMed  CAS  Google Scholar 

  87. Orsi NM, Leese HJ (2001) Protection against reactive oxygen species during mouse ­preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev 59:44–53

    PubMed  CAS  Google Scholar 

  88. Khurana NK, Wales RG (1989) Effects of oxygen concentration on the metabolism of (U–14 C)glucose by mouse morulae and early blastocysts in vitro. Reprod Fertil Dev 1:99–106

    PubMed  CAS  Google Scholar 

  89. Bermejo-Alvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A (2010) Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 20:341–349

    PubMed  CAS  Google Scholar 

  90. Banwell KM, Lane M, Russell DL, Kind KL, Thompson JG (2007) Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum Reprod 22:2768–2775

    PubMed  CAS  Google Scholar 

  91. Park JI, Hong JY, Yong HY, Hwang WS, Lim JM, Lee ES (2005) High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Anim Reprod Sci 87:133–141

    PubMed  CAS  Google Scholar 

  92. Oyamada T, Fukui Y (2004) Oxygen tension and medium supplements for in vitro maturation of bovine oocytes cultured individually in a chemically defined medium. J Reprod Dev 50:107–117

    PubMed  CAS  Google Scholar 

  93. Karja NW, Wongsrikeao P, Murakami M, Agung B, Fahrudin M, Nagai T, Otoi T (2004) Effects of oxygen tension on the development and quality of porcine in vitro fertilized embryos. Theriogenology 62:1585–1595

    PubMed  Google Scholar 

  94. Booth PJ, Holm P, Callesen H (2005) The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology 63:2040–2052

    PubMed  Google Scholar 

  95. Eppig JJ, Wigglesworth K (1995) Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration. Mol Reprod Dev 42:447–456

    PubMed  CAS  Google Scholar 

  96. Corrêa GA, Rumpf R, Mundim TC, Franco MM, Dode MA (2008) Oxygen tension during in vitro culture of bovine embryos: effect in production and expression of genes related to oxidative stress. Anim Reprod Sci 104:132–42

    PubMed  Google Scholar 

  97. Dumoulin J, Vanvuchelen R, Land J, Pieters MH, Geraedts JP, Evers JL (1995) Effect of oxygen concentration on in-vitro fertilization and embryo culture in the human and the mouse. Fertil Steril 63:115–119

    PubMed  CAS  Google Scholar 

  98. Dumoulin J, Meijers C, Bras M, Coonen E, Geraedts JP, Evers JL (1999) Effect of oxygen concentration on human in-vitro fertilization and embryo transfer. Hum Reprod 14:465–469

    PubMed  CAS  Google Scholar 

  99. Behr B, Pool TB, Milki AA, Moore D, Gebhardt J, Dasig D (1999) Preliminary clinical experience with human blastocyst development in vitro without co-culture. Hum Reprod 14:454–457

    PubMed  CAS  Google Scholar 

  100. Bahceci M, Ciray HN, Karagenc L, Ulug U, Bener F (2005) Effect of oxygen concentration during the incubation of embryos of women undergoing ICSI and embryo transfer: a prospective randomized study. Reprod Biomed Online 11:438–443

    PubMed  Google Scholar 

  101. Kea B, Gebhardt J, Watt J, Westphal LM, Lathi RB, Milki AA, Behr B (2007) Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil Steril 87:213–216

    PubMed  Google Scholar 

  102. Kovačič B, Vlaisavljevič V (2008) Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online 17:229–236

    PubMed  Google Scholar 

  103. Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M (2009) In vitro culture under physiologic oxygen concentration improves blastocyst yield on sibling oocytes. Fertil Steril 91(4 Suppl):1459–1461

    PubMed  Google Scholar 

  104. Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, Barnett BD, Madden JD (2009) A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod 24:300–307

    PubMed  Google Scholar 

  105. Waldenstrom U, Engstrom A, Hellberg D, Nilsson S (2009) Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril 91:2461–2465

    PubMed  Google Scholar 

  106. Nanassy L, Peterson CA, Wilcox AL, Peterson CM, Hammoud A, Carrell DT (2010) Comparison of 5 % and ambient oxygen during days 3–5 of in vitro culture of human embryos. Fertil Steril 93:579–585

    PubMed  Google Scholar 

  107. Kovačič B, Sajko MC, Vlaisavljevič V (2010) A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril 94:511–519

    PubMed  Google Scholar 

  108. Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S (2011) Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev 1. Art. No.: CD008950

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borut Kovačič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kovačič, B. (2012). Culture Systems: Low-Oxygen Culture. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics