Skip to main content

Characterization of Single-Domain Antibodies with an Engineered Disulfide Bond

  • Protocol
  • First Online:
Book cover Single Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 911))

Abstract

Camelidae single-domain antibodies (VHHs) represent a unique class of emerging therapeutics. Similar to other recombinant antibody fragments (e.g., Fabs, scFvs), VHHs are amenable to library screening and selection, but benefit from superior intrinsic biophysical properties such as high refolding efficiency, high solubility, no tendency for aggregation, resistance to proteases and chemical denaturants, and high expression, making them ideal agents for antibody-based drug design. Despite these favorable biophysical characteristics, further improvements to VHH stability are desirable when considering applications in adverse environments like high heat, low humidity, pH extremes, and the acidic, protease-rich gastrointestinal tract. Recently, the introduction of a disulfide bond into the hydrophobic core of camelid VHHs increased antibody thermal and conformational stability. Here, we present additional protocols for characterizing the effects of the introduced disulfide bond on a panel of llama VHHs. Specifically, we employ mass spectrometry fingerprinting analysis of VHH peptides to confirm the presence of the introduced disulfide bond, size exclusion chromatography, and surface plasmon resonance to examine the effects on aggregation state and target affinity, and circular dichroism spectroscopy and protease digestion assays to assess the effects on thermal and proteolytic stability. The disulfide bond stabilization strategy can be incorporated into antibody library design and should lead to hyperstabilized single-domain antibodies (VHHs, VHs), and possibly Fabs and scFvs, if selection pressures such as denaturants or proteases are introduced during antibody selection.

This is National Research Council Canada Publication 50015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16:955–960

    Article  PubMed  CAS  Google Scholar 

  2. Jespers L et al (2004) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22:1161–1165

    Article  PubMed  CAS  Google Scholar 

  3. Arbabi-Ghahroudi M et al (2009) Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic ­isoelectric points. Protein Eng Des Sel 22:59–66

    Article  PubMed  CAS  Google Scholar 

  4. Famm K et al (2008) Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J Mol Biol 376:926–931

    Article  PubMed  CAS  Google Scholar 

  5. Jermutus L et al (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A 98:75–80

    Article  PubMed  CAS  Google Scholar 

  6. Young NM et al (1995) Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Lett 377:135–139

    Article  PubMed  CAS  Google Scholar 

  7. Wörn A, Plückthun A (1998) Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry 37:13120–13127

    Article  PubMed  Google Scholar 

  8. Arbabi-Ghahroudi M, MacKenzie R, Tanha J (2010) Site-directed mutagenesis for improving biophysical properties of VH domains. Methods Mol Biol 634:309–330

    Article  PubMed  CAS  Google Scholar 

  9. Chao G et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768

    Article  PubMed  CAS  Google Scholar 

  10. Harmsen MM et al (2006) Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. Appl Microbiol Biotechnol 72:544–551

    Article  PubMed  CAS  Google Scholar 

  11. Kubetzko S et al (2006) PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragments 4D5: effects on tumor targeting. J Biol Chem 281:35186–35201

    Article  PubMed  CAS  Google Scholar 

  12. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  PubMed  CAS  Google Scholar 

  13. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24:501–519

    Article  PubMed  Google Scholar 

  14. Hussack G, Tanha J (2010) Toxin-specific antibodies for the treatment of Clostridium difficile: current status and future perspectives. Toxins 2:998–1018

    Article  PubMed  CAS  Google Scholar 

  15. Hagihara Y, Mine S, Uegaki K (2007) Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region. J Biol Chem 282:36489–36495

    Article  PubMed  CAS  Google Scholar 

  16. Saerens D et al (2008) Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J Mol Biol 377:478–488

    Article  PubMed  CAS  Google Scholar 

  17. Chan PH et al (2008) Engineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion to amyloid fibrils. Biochemistry 47:11041–11054

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  19. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  PubMed  CAS  Google Scholar 

  20. Greenfield NJ (2006) Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat Protoc 1:2891–2899

    Article  PubMed  CAS  Google Scholar 

  21. To R et al (2005) Isolation of monomeric human VHs by a phage selection. J Biol Chem 280:41395–41403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Tanha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hussack, G., MacKenzie, C.R., Tanha, J. (2012). Characterization of Single-Domain Antibodies with an Engineered Disulfide Bond. In: Saerens, D., Muyldermans, S. (eds) Single Domain Antibodies. Methods in Molecular Biology, vol 911. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-968-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-968-6_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-967-9

  • Online ISBN: 978-1-61779-968-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics