Skip to main content

Improvement of Single Domain Antibody Stability by Disulfide Bond Introduction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 911))

Abstract

The successful medical application of single domain antibodies largely depends on their functionality. This feature is partly determined by the intrinsic stability of the single domain. Therefore a lot of research has gone into the elucidation of rules to uniformly increase stability of antibodies. Recently, a novel intra-domain disulfide bond was independently discovered by two research groups, after either rational design or careful investigation of the naturally occurring camelid antibody repertoire. By introducing this particular disulfide bond within a single domain antibody, the conformational stability can be increased in general. In this chapter it is described how to introduce this extra intra-domain disulfide bond and how to estimate the biophysical and biochemical impact of this cystine on the domain.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  PubMed  CAS  Google Scholar 

  2. Jespers L, Schon O, Famm K, Winter G (2004) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22:1161–1165

    Article  PubMed  CAS  Google Scholar 

  3. Famm K, Hansen L, Christ D, Winter G (2008) Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J Mol Biol 376:926–931

    Article  PubMed  CAS  Google Scholar 

  4. Saerens D, Pellis M, Loris R, Pardon E, Dumoulin M, Matagne A, Wyns L, Muyldermans S, Conrath K (2005) Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J Mol Biol 352:597–607

    Article  PubMed  CAS  Google Scholar 

  5. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, Muyldermans S, Wyns L, Matagne A (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11:500–515

    Article  PubMed  CAS  Google Scholar 

  6. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46

    Article  PubMed  Google Scholar 

  7. Ladenson RC, Crimmins DL, Landt Y, Ladenson JH (2006) Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem 78:4501–4508

    Article  PubMed  CAS  Google Scholar 

  8. Ewert S, Cambillau C, Conrath K, Pluckthun A (2002) Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Biochemistry 41:3628–3636

    Article  PubMed  CAS  Google Scholar 

  9. Perez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LG (2001) Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40:74–83

    Article  PubMed  CAS  Google Scholar 

  10. Hagihara Y, Matsuda T, Yumoto N (2005) Cellular quality control screening to identify amino acid pairs for substituting the disulfide bonds in immunoglobulin fold domains. J Biol Chem 280:24752–24758

    Article  PubMed  CAS  Google Scholar 

  11. van der Vaart JM, Pant N, Wolvers D, Bezemer S, Hermans PW, Bellamy K, Sarker SA, van der Logt CP, Svensson L, Verrips CT, Hammarstrom L, van Klinken BJ (2006) Reduction in morbidity of rotavirus induced diarrhoea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine 24:4130–4137

    Article  PubMed  Google Scholar 

  12. Hagihara Y, Mine S, Uegaki K (2007) Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region. J Biol Chem 282:36489–36495

    Article  PubMed  CAS  Google Scholar 

  13. Saerens D, Conrath K, Govaert J, Muyldermans S (2008) Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J Mol Biol 377:478–488

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Lab Press, Plainview

    Google Scholar 

  15. Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC (1994) Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151:119–123

    Article  PubMed  CAS  Google Scholar 

  16. Barik S (1997) Mutagenesis and gene fusion by megaprimer PCR. Methods Mol Biol 67:173–182

    PubMed  CAS  Google Scholar 

  17. Miyazaki K, Takenouchi M (2002) Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques 33:1033–1038

    PubMed  CAS  Google Scholar 

  18. Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954

    Article  PubMed  CAS  Google Scholar 

  19. Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74:443–450

    Article  PubMed  CAS  Google Scholar 

  20. Bates RG, Robinson RA (1973) Tris (hydroxymethyl) aminomethane. Useful secondary pH standard. Anal Chem 45:420

    Article  CAS  Google Scholar 

  21. Fukada H, Takahashi K (1998) Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins 33:159–166

    Article  PubMed  CAS  Google Scholar 

  22. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  23. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312:224–227

    Article  PubMed  CAS  Google Scholar 

  24. Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  PubMed  CAS  Google Scholar 

  25. Riddles PW, Blakeley RL, Zerner B (1979) Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)–a reexamination. Anal Biochem 94:75–81

    Article  PubMed  CAS  Google Scholar 

  26. Kabat EA, Wu TT, Perry HM, Gottsman KS, Foeller C (1991) Sequences of proteins of immunologic interest, 5th edn. Public Health Service, National Institutes of Health, US Department of Health and Human Services, Bethesda

    Google Scholar 

Download references

Acknowledgements

No financial interest is declared by the authors. We would like to thank Ms. Kaede Lilian-Komaba, Ir. Jochen Govaert, and Dr. Ir. Cécile Vincke for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Hagihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hagihara, Y., Saerens, D. (2012). Improvement of Single Domain Antibody Stability by Disulfide Bond Introduction. In: Saerens, D., Muyldermans, S. (eds) Single Domain Antibodies. Methods in Molecular Biology, vol 911. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-968-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-968-6_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-967-9

  • Online ISBN: 978-1-61779-968-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics