Skip to main content

Targeted Mass Spectrometry-Based Metabolomic Profiling Through Multiple Reaction Monitoring of Liver and Other Biological Matrices

  • Protocol
  • First Online:
Liver Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 909))

Abstract

In a systemic viewpoint, relevant biological information on living systems can be grasped from the study of small, albeit pivotal molecules which constitute the fundamental bricks of metabolic pathways. This holds true for liver which plays, among its unique functions, a key role in metabolism. The nonbiased analysis of all this small-molecule complement in its entirety is known as metabolomics. However, no practical approach currently exists to investigate all metabolic species simultaneously without including a technical bias towards acidic or basic compounds, especially when performing mass spectrometry-based investigations. Technical aspects of rapid resolution reversed phase HPLC online with mass spectrometry are hereby described. Such an approach allows to discriminate and quantify a wide array of metabolites with extreme specificity and sensitivity, thus enabling to perform complex investigations even on extremely low quantities of biological material. The advantages also include the possibility to perform targeted investigations on a single (or a handful of) metabolite(s) simoultaneously through single (multiple) reaction monitoring, which further improves the dynamic range of concentrations to be monitored.

Such an approach has already proven to represent a valid tool in the direct (on the liver) or indirect (on human red blood cell metabolism which is hereby presented as a representative model, but also on blood plasma or other biological fluids) assessment of metabolic poise modulation and pharmacokinetics for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suter L, Schroeder S, Meyer K et al (2011) EU Framework 6 Project: predictive toxicology (PredTox)-overview and outcome. Toxicol Appl Pharmacol 252(2):73–84. doi:10.1016/j.taap. 2010.10.008

    Google Scholar 

  2. O’Connell TM, Watkins PB (2010) The application of metabonomics to predict drug-induced liver injury. Clin Pharmacol Ther 88:394–399

    Article  PubMed  Google Scholar 

  3. Harris SR, Zhang GF, Sadhukhan S et al (2011) Metabolism of levulinate in perfused rat livers and live rats: conversion to the drug of abuse 4-hydroxy-pentanoate. J Biol Chem 286(7):5895–904. doi:10.1074/jbc.M110.196808

    Google Scholar 

  4. Kim HJ, Kim JH, Noh S et al (2010) Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J Proteome Res 10:722–731

    Article  PubMed  Google Scholar 

  5. Pilvi TK, Seppanen-Laakso T, Simolin H et al (2008) Metabolomic changes in fatty liver can be modified by dietary protein and calcium during energy restriction. World J Gastroenterol 14:4462–4472

    Article  PubMed  CAS  Google Scholar 

  6. D’Alessandro A, Zolla L (2010) Pharmacoproteomics: a chess game on a protein field. Drug Discov Today 15:1015–1023

    Article  PubMed  Google Scholar 

  7. D’Alessandro A, Zolla L (2010) Proteomics for quality-control processes in transfusion medicine. Anal Bioanal Chem 398:111–124

    Article  PubMed  Google Scholar 

  8. Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. ACS Chem Biol 15:91–103

    Article  Google Scholar 

  9. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc Natl Acad Sci USA 68:2374–2376

    Article  PubMed  CAS  Google Scholar 

  10. Evans AM, DeHaven CD, Barrett T et al (2009) Integrated, non targeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667

    Article  PubMed  CAS  Google Scholar 

  11. Sana TR, Waddell K, Fischer SM (2008) A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 871:314–321

    Article  PubMed  CAS  Google Scholar 

  12. Buescher JM, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography–tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82:4403–4412

    Article  PubMed  CAS  Google Scholar 

  13. Lee Do Y, Bowen BP, Northen TR (2010) Mass spectrometry-based metabolomics, analysis of metabolite–protein interactions, and imaging. Biotechniques 49:557–565

    Article  PubMed  Google Scholar 

  14. Michopoulos F, Lai L, Gika H et al (2009) UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phasenextraction. J Proteome Res 8:2114–2121

    Article  PubMed  CAS  Google Scholar 

  15. Bruce SJ, Tavazzi I, Parisod V et al (2009) Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem 81:3285–3296

    Article  PubMed  CAS  Google Scholar 

  16. Parab GS, Rao R, Lakshminarayanan S et al (2009) Data-driven optimization of metabolomics methods using rat liver samples. Anal Chem 81:1315–1323

    Article  PubMed  CAS  Google Scholar 

  17. Griffiths WJ, Koal T, Wang Y et al (2010) Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl 49:5426–5445

    Article  PubMed  CAS  Google Scholar 

  18. D’Alessandro A, Gevi F, Zolla L (2011) A robust high resolution reversed-phase HPLC strategy to investigate various metabolic species in different biological models. Mol Biosyst 7(4):1024–32. doi:10.1039/C0MB00274G

    Google Scholar 

  19. Burnum KE, Cornett DS, Puolitaival SM et al (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50:2290–2298

    Article  PubMed  CAS  Google Scholar 

  20. Hendriks G, Uges DRA, Franke JP (2007) Reconsideration of sample pH adjustment in bioanalytical liquid–liquid extraction of ionisable compounds. J Chromatogr B 853:234–241

    Article  CAS  Google Scholar 

  21. Zhang Y, Wang G, Huang Q et al (2009) Organic solvent extraction and metabonomic profiling of the metabolites in erythrocytes. J Chromatogr B Analyt Technol Biomed Life Sci 877:1751–1757

    Article  PubMed  Google Scholar 

  22. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  23. Buscher JM, Czernik D, Ewald JC (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 81:2135–2143

    Article  PubMed  CAS  Google Scholar 

  24. Cai X, Zou L, Dong J et al (2009) Analysis of highly polar metabolites in human plasma by ultra-performance hydrophilic interaction liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Anal Chim Acta 650:10–15

    Article  PubMed  CAS  Google Scholar 

  25. Coulier L, Bas R, Jespersen S et al (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography–electrospray ionization mass spectrometry. Anal Chem 78:6573–6658

    Article  PubMed  CAS  Google Scholar 

  26. Taymaz-Nikerel H, Mey M, Ras C et al (2009) Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Anal Biochem 386:9–19

    Article  PubMed  CAS  Google Scholar 

  27. Hsieh Y, Duncan CJ, Brisson JM (2007) Fused-core silica column high-performance liquid chromatography/tandem mass spectrometric determination of rimonabant in mouse plasma. Anal Chem 79:5668–5673

    Article  PubMed  CAS  Google Scholar 

  28. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:521–526

    Article  Google Scholar 

  29. Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  PubMed  CAS  Google Scholar 

  30. Bertsch A, Gröpl C, Reinert K, Kohlbacher O (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367

    Article  PubMed  CAS  Google Scholar 

  31. Nasso S, Silvestri F, Tisiot F et al (2010) An optimized data structure for high-throughput 3D proteomics data: mzRTree. J Proteomics 73:1176–1182

    Article  PubMed  CAS  Google Scholar 

  32. Schmaier AH, Petruzzelli LM (2003) Hematology for the medical student. Lippincott Williams & Wilikins, Baltimore, pp 22–23, 3

    Google Scholar 

  33. Leskovac V, Jerance D, Burany E (1975) Evidence for a histidine and a cysteine residue in the substrate-binding site of yeast alcohol dehydrogenase. Int J Biochem 6:563–568

    Article  CAS  Google Scholar 

  34. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lello Zolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

D’Alessandro, A., Gevi, F., Zolla, L. (2012). Targeted Mass Spectrometry-Based Metabolomic Profiling Through Multiple Reaction Monitoring of Liver and Other Biological Matrices. In: Josic, D., Hixson, D. (eds) Liver Proteomics. Methods in Molecular Biology, vol 909. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-959-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-959-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-958-7

  • Online ISBN: 978-1-61779-959-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics