Skip to main content

Cellulase Processivity

  • Protocol
  • First Online:
Biomass Conversion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 908))

Abstract

There are two types of processive cellulases, exocellulases and processive endoglucanases. There are also two classes of exocellulases, ones that attack the reducing ends of cellulose chains and ones that attack the nonreducing ends. There are a number of ways of assaying processivity but none of them are ideal. It appears that exocellulases, all of which have their active sites in a tunnel, couple movement along a cellulose chain with cleavage of cellobiose from the end of the cellulose molecule. There are two sets of structures that suggest how an exocellulase might move along a cellulose chain. For family 48 exocellulases there are two different ways that a chain can be bound in the active site while for family 6 exocellulases there are several different ligand-bound structures. Site-directed mutagenesis of Thermobifida fusca exocellulases Cel48A and Cel6B and the processive endoglucanase Cel9A have identified some mutations that increase processivity and some that decrease processivity. In addition a mutation in Cel6B was identified that appears to allow the mutant enzyme to move along a cellulose chain in the absence of cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178

    CAS  Google Scholar 

  2. Barr BK, Hsieh YL, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592

    Article  CAS  Google Scholar 

  3. Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386

    Article  CAS  Google Scholar 

  4. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Teeri TT, Jones A (1994) The three-dimensional structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528

    Article  CAS  Google Scholar 

  5. Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaich JP, Driguez H, Haser R (1998) The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. EMBO J 17:5551–5562

    Article  CAS  Google Scholar 

  6. Sakon J, Irwin D, Wilson DB, Karplus PA (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818

    Article  CAS  Google Scholar 

  7. Irwin D, Shin D-H, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    CAS  Google Scholar 

  8. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705

    Article  CAS  Google Scholar 

  9. Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, Eijsink VG (2009) Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 284:10610–10617

    Article  CAS  Google Scholar 

  10. Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013

    Article  CAS  Google Scholar 

  11. Vuong TV, Wilson DB (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 75:6655–6661

    Article  CAS  Google Scholar 

  12. Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J (1998) Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett 432:113–116

    Article  CAS  Google Scholar 

  13. Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284:36186–36190

    Article  CAS  Google Scholar 

  14. Harjunpää V, Teleman A, Koivula A, Ruohonen L, Teeri TT, Teleman O, Drakenberg T (1996) Cello-oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Association and rate constants derived from an analysis of progress curves. Eur J Biochem 240:591

    Article  Google Scholar 

  15. Nidetsky B, Zachariae W, Gercken G, Hayn M, Steiner W (1994) Hydrolysis of cello-oligosaccharides by Trichoderma reesei cellobiohydrolases; experimental data and kinetic modeling. Enzyme Microb Technol 16:43–52

    Article  Google Scholar 

  16. Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177

    Article  CAS  Google Scholar 

  17. Kipper K, Väljamäe P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem J 385:527–535

    Article  CAS  Google Scholar 

  18. Praestgaard E, Elmerdahl J, Murphy L, Nymand S, McFarland KC, Borch K, Westh P (2011) A kinetic model for the burst phase of processive cellulases. FEBS J 10.1111/j.-1742-4658

    Google Scholar 

  19. Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R (2008) Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocello oligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol 375:499–510

    Article  CAS  Google Scholar 

  20. Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S, Driguez H, Schülein M, Davies GJ (2003) Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 11:855–864

    Article  CAS  Google Scholar 

  21. Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172

    Article  CAS  Google Scholar 

  22. Guimarães BG, Souchon H, Lytle BL, Wu D, Alzari PM (2002) The crystal structure and catalytic mechanism of cellobiohydrolase CelS, major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol 320:587–596

    Article  Google Scholar 

  23. Vuong TV, Wilson DB (2009) The absence of a single identifiable catalytic base residue in Thermobifida fusca exocellulase Cel6B. FEBS J 276:3837–3845

    Article  CAS  Google Scholar 

  24. Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT (1998) Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 429:341–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BioEnergy Science Center (BESC), which is a part of the U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory. We thank Mo Chen for preparing the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wilson, D.B., Kostylev, M. (2012). Cellulase Processivity. In: Himmel, M. (eds) Biomass Conversion. Methods in Molecular Biology, vol 908. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-956-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-956-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-955-6

  • Online ISBN: 978-1-61779-956-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics