Skip to main content

Assessment of Toxicity of Nanoparticles Using Insects as Biological Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

Abstract

Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. The fundamental understanding in effects of nanoparticles (NPs) on and their interactions with biomolecules and organismal systems have yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We will then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693–2730

    Article  CAS  Google Scholar 

  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  3. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  4. Taton T, Mirkin C, Letsinger R (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757

    Article  PubMed  CAS  Google Scholar 

  5. Cao Y, Jin R, Mirkin C (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536

    Article  PubMed  CAS  Google Scholar 

  6. Sandhu K, McIntosh C, Simard J, Smith S, Rotello V (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem 13:3–6

    Article  PubMed  CAS  Google Scholar 

  7. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  PubMed  CAS  Google Scholar 

  8. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  PubMed  CAS  Google Scholar 

  9. Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW, Weisman RB, Rosenblum MG, Wilson LJ (2006) Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun (Camb) 28:3004–3006

    Article  Google Scholar 

  10. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  PubMed  CAS  Google Scholar 

  11. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310

    Article  PubMed  CAS  Google Scholar 

  12. Bhavane R, Karathanasis E, Annapragada AV (2007) Triggered release of ciprofloxacin from nanostructured agglomerated vesicles. Int J Nanomedicine 2:407

    Article  PubMed  CAS  Google Scholar 

  13. Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 17:318–324

    Article  PubMed  CAS  Google Scholar 

  14. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  PubMed  CAS  Google Scholar 

  15. Kirschvink J, Padmanabha S, Boyce C, Oglesby J (1997) Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 200:1363

    PubMed  Google Scholar 

  16. Kirschvink JL, Kirschvink AK (1991) Is geomagnetic sensitivity real? replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Am Zool 31:169

    Google Scholar 

  17. Walker MM, Bitterman M (1989) Short communication honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145:489

    Google Scholar 

  18. Phillips J, Sayeed O (1993) Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 172:303–308

    Article  CAS  Google Scholar 

  19. Vácha M (2006) Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. J Exp Biol 209:3882

    Article  PubMed  Google Scholar 

  20. Vácha M, Puzová T, Kvícalová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212:3473

    Article  PubMed  Google Scholar 

  21. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel D (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207

    Article  PubMed  CAS  Google Scholar 

  22. Abraçado L, Esquivel D, Wajnberg E (2008) Oriented magnetic material in head and antennae of Solenopsis interrupta ant. J Magn Magn Mater 320:e204–e206

    Article  Google Scholar 

  23. De Oliveira JF, Wajnberg E, de Souza Esquivel DM, Weinkauf S, Winklhofer M, Hanzlik M (2010) Ant antennae: are they sites for magnetoreception? J R Soc Interface 7:143

    Article  PubMed  Google Scholar 

  24. Rocha A, Zhou Y, Kundu S, González JM, BradleighVinson S, Liang H (2011) In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis. J Nanobiotechnol 9:5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially sponsored by the National Science Foundation (0515930), Texas Engineering Experimental Station, and the Texas A&M University. Assistance provided by Drs. Brad Vinson, Jorge Gonzelez, and Subrata Kundu was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, Y., Rocha, A., Sanchez, C.J., Liang, H. (2012). Assessment of Toxicity of Nanoparticles Using Insects as Biological Models. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_35

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics