Skip to main content

Preparation of Lipid:Peptide:DNA (LPD) Nanoparticles and Their Use for Gene Transfection

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

Abstract

Therapeutic gene delivery systems offer the potential for the treatment of a range of inherited and acquired inherited diseases. In contrast with viral gene vectors, the nonviral gene vectors provide a safer alternative and additional advantage such as the improved delivery efficiency, low cost, and often unlimited capacity to package DNA. Here we describe preparation of nonviral gene delivery technique based on lipid:peptide:DNA (LPD) complexes. The size of LPD particles is in the nanometre range. The use of these nanoparticulate LPDs results in high efficiency transfections and a high level of gene expression in vitro. LPDs provide a convenient and efficient tool for gene therapy for the gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emery DE (2004) Gene therapy for genetic diseases: on the horizon. Clin Appl Immunol Rev 4:411–422

    Article  CAS  Google Scholar 

  2. Hashida M, Nishikawa M, Yamashita F, Takakura Y (2001) Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev 52:187–196

    Article  PubMed  CAS  Google Scholar 

  3. Schwiebert EM, Boyd C, Scholte BJ (2004) Gene delivery systems-gene therapy vectors for cystic fibrosis. J Cystic Fibrosis 3:203–212

    Google Scholar 

  4. Patel DH, Misra A (2011) Gene delivery using viral vectors. Challenges Deliv Ther Gen Proteom 5:207–270

    Google Scholar 

  5. Lee RJ, Huang L (1997) Lipidic vector systems for gene transfer. Crit Rev Ther Drug Carrier Syst 14:173–206

    Article  PubMed  CAS  Google Scholar 

  6. Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486

    Article  PubMed  CAS  Google Scholar 

  7. Pouton CW, Seymour LW (2001) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46:187–203

    Article  PubMed  CAS  Google Scholar 

  8. Liu F, Huang L (2002) Development of non-viral vectors for systemic gene delivery. J Control Release 78:259–266

    Article  PubMed  CAS  Google Scholar 

  9. Woodle MC, Scaria P (2001) Cationic liposomes and nucleic acids. Curr Opin Colloid Interface Sci 6:78–84

    Article  CAS  Google Scholar 

  10. Zabner J (1997) Cationic lipids used in gene transfer. Adv Drug Deliv Rev 27:17–28

    Article  PubMed  CAS  Google Scholar 

  11. Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgüne N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294

    Article  PubMed  CAS  Google Scholar 

  12. Zhdanov RI, Podobed OV, Vlassov VV (2002) Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy. Bioelectrochemistry 58:53–64

    Article  PubMed  CAS  Google Scholar 

  13. Morille M, Passirani C, Vonarbourg A, Clayreul A, Benoit JP (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496

    Article  PubMed  CAS  Google Scholar 

  14. Moret I, Peris E, Guillem VM, Benet M, Revert F, Dasí F, Crespo A, Aliño SF (2001) Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 76:169–181

    Article  PubMed  CAS  Google Scholar 

  15. Remaut K, Sanders NN, Fayazpour F, Demeester J, DeSmedt SC (2006) Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Release 115:335–343

    Article  PubMed  CAS  Google Scholar 

  16. Ahearn A, Malone R (1999) Models of cationic liposome mediated transfection. Gene Ther Mol Biol 4:159–170

    Google Scholar 

  17. Zauner W, Farrow NA, Haines AM (2001) In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 71:39–51

    Article  PubMed  CAS  Google Scholar 

  18. Tsai JT, Furstoss KJ, Michnick T, Sloane DL, Paul RW (2002) Quantitative physical characterization of lipid-polycation-DNA lipoplexes. Biotechnol Appl Biochem 36:13–20

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Ying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, F., Li, HY. (2012). Preparation of Lipid:Peptide:DNA (LPD) Nanoparticles and Their Use for Gene Transfection. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics