Skip to main content

Genetic Screens to Identify Bacterial sRNA Regulators

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 905))

Abstract

Small regulatory RNAs (sRNAs) are versatile regulators that have been shown to be involved in the gene regulation of a growing number of biological pathways in bacteria. While finding the targets of a given sRNA has been the focus of many studies, fewer methods have been described to uncover which, if any, sRNAs regulate a given gene. Here I present two genetic screens that are designed to search for sRNAs regulating a gene of interest. Before the screens are performed, a translational fusion is made between the gene of interest and lacZ, designed so that mostly post-transcriptional effects on the gene’s expression can be analyzed. I describe here a simple and rapid way to obtain this fusion, even when the transcriptional start site is unknown, by combining PCR or 5′RACE with recombination in the chromosome of a special strain of Escherichia coli. The first genetic screen uses a genomic multicopy library to find regulator genes that, when overexpressed, affect the expression of the fusion. While this technique is a classical genetic screen, particular attention is paid to how it can be used to specifically find sRNAs. A second screen is described that takes advantage of a specific library of sRNAs of E. coli that provides an easier and more rapid way to look for sRNA regulation. The library is transformed into the fusion containing strain using a serial transformation protocol developed in microtiter plates. The transformants can then be directly assayed for effects on the beta-galactosidase activity of the fusion in liquid, providing a precise and rapid way to evaluate sRNA regulation. Use of one or both of these screens should help uncover new pathways of regulation by sRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3(12, pii):a003798

    Article  PubMed  Google Scholar 

  2. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  PubMed  CAS  Google Scholar 

  3. Gottesman S, McCullen CA, Guillier M, Vanderpool CK, Majdalani N, Benhammou J, Thompson KM, FitzGerald PC, Sowa NA, FitzGerald DJ (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71:1–11

    Article  PubMed  CAS  Google Scholar 

  4. Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol 10:125–133

    Article  PubMed  CAS  Google Scholar 

  5. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124

    Article  PubMed  CAS  Google Scholar 

  6. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4:e1000163

    Article  PubMed  Google Scholar 

  7. Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651

    Article  PubMed  CAS  Google Scholar 

  8. Raghavan R, Groisman EA, Ochman H (2011) Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 21(9):1487–1497

    Article  PubMed  CAS  Google Scholar 

  9. Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 12:536–546

    Article  PubMed  CAS  Google Scholar 

  10. Mandin P, Gottesman S (2009) A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol 72:551–565

    Article  PubMed  CAS  Google Scholar 

  11. Mandin P, Gottesman S (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29:3094–3107

    Article  PubMed  CAS  Google Scholar 

  12. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  13. Court DL, Swaminathan S, Yu D, Wilson H, Baker T, Bubunenko M, Sawitzke J, Sharan SK (2003) Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 315:63–69

    Article  PubMed  CAS  Google Scholar 

  14. Urban JH, Vogel J (2009) A green fluorescent protein (GFP)-based plasmid system to study post-transcriptional control of gene expression in vivo. Methods Mol Biol 540:301–319

    Article  PubMed  CAS  Google Scholar 

  15. Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. CSHL Press, Cold Spring Harbor, NY

    Google Scholar 

  17. Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11:941–950

    Article  PubMed  CAS  Google Scholar 

  18. Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J (2008) Small RNA binding to 5’ mRNA coding region inhibits translational initiation. Mol Cell 32:827–837

    Article  PubMed  CAS  Google Scholar 

  19. Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16:840–846

    Article  PubMed  CAS  Google Scholar 

  20. Shuman HA, Silhavy TJ (2003) The art and design of genetic screens: Escherichia coli. Nat Rev Genet 4:419–431

    Article  PubMed  CAS  Google Scholar 

  21. Hussein R, Lim HN (2011) Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci USA 108:1110–1115

    Article  PubMed  CAS  Google Scholar 

  22. Olejniczak M (2011) Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry 50:4427–4440

    Article  PubMed  CAS  Google Scholar 

  23. Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34:2791–2802

    Article  PubMed  CAS  Google Scholar 

  24. Papenfort K, Bouvier M, Mika F, Sharma CM, Vogel J (2010) Evidence for an autonomous 5’ target recognition domain in an Hfq-associated small RNA. Proc Natl Acad Sci USA 107:20435–20440

    Article  PubMed  CAS  Google Scholar 

  25. Figueroa-Bossi N, Valentini M, Malleret L, Bossi L (2009) Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev 23:2004–2015

    Article  PubMed  CAS  Google Scholar 

  26. Guillier M, Gottesman S (2008) The 5’ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 36:6781–6794

    Article  PubMed  CAS  Google Scholar 

  27. Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46:813–826

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I greatly thank F. Barras for financial, space and intellectual support. I thank S. Gottesman for critical reading and helpful discussions on the manuscript. I also thank C. Beisel, Y. Duverger, M. Guillier, H.J. Lee, K. Moon, and B. Py for help and comments on the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Mandin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mandin, P. (2012). Genetic Screens to Identify Bacterial sRNA Regulators. In: Keiler, K. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 905. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-949-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-949-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-948-8

  • Online ISBN: 978-1-61779-949-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics