Skip to main content

Hematopoietic Stem Cell Mobilization with Agents Other than G-CSF

  • Protocol
  • First Online:
Stem Cell Mobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 904))

Abstract

Hematopoietic stem and progenitor mobilization has revolutionized the field of hematopoietic transplantation. Currently, hematopoietic grafts acquired from the peripheral blood of patients or donors treated with granulocyte-colony stimulating factor (G-CSF) are the preferred source for transplantation. G-CSF mobilization regimens, however, are associated with known morbidities and a significant number of normal donors and patient populations fail to mobilize sufficient numbers of hematopoietic stem and progenitor cells for transplantation, necessitating the need for non-G-CSF mobilization strategies. Mechanistic studies evaluating hematopoietic bone marrow niche interactions have uncovered novel agents with the capacity for hematopoietic mobilization. This chapter provides a comprehensive overview of mobilizing agents, other than G-CSF, and experimental procedures and technical aspects important to evaluate and define their hematopoietic mobilizing activities alone and in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couban S, Simpson DR, Barnett MJ, Bredeson C, Hubesch L, Howson-Jan K, Shore TB, Walker IR, Browett P, Messner HA, Panzarella T, Lipton JH (2002) A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 100:1525–1531

    PubMed  CAS  Google Scholar 

  2. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH (2001) Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 19:3685–3691

    PubMed  CAS  Google Scholar 

  3. Mohty M, Kuentz M, Michallet M, Bourhis JH, Milpied N, Sutton L, Jouet JP, Attal M, Bordigoni P, Cahn JY, Boiron JM, Blaise D (2002) Chronic graft-versus-host disease after allogeneic blood stem cell transplantation: long-term results of a randomized study. Blood 100:3128–3134

    PubMed  CAS  Google Scholar 

  4. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R, Kashyap A, FLowers ME, Lilleby K, Chauncey TR, Storb R, Appelbaum FR (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 344:175–181

    PubMed  CAS  Google Scholar 

  5. Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, Cornelissen JJ, Gale RP, Goldman JM, Loberiza FR Jr, Hertenstein B, Klein JP, Montserrat E, Zhang MJ, Ringden O, Tomany SC, Rowlings PA, Van Hoef ME, Gratwohl A (2000) Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood 95:3702–3709

    PubMed  CAS  Google Scholar 

  6. Korbling M, Anderlini P (2001) Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 98:2900–2908

    PubMed  CAS  Google Scholar 

  7. Cashen AF, Lazarus HM, Devine SM (2007) Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant 39:577–588

    PubMed  CAS  Google Scholar 

  8. Gratwohl A, Baldomero H, Horisberger B, Schmid C, Passweg J, Urbano-Ispizua A (2002) Current trends in hematopoietic stem cell transplantation in Europe. Blood 100:2374–2386

    PubMed  CAS  Google Scholar 

  9. Falzetti F, Aversa F, Minelli O, Tabilio A (1999) Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet 353:555

    PubMed  CAS  Google Scholar 

  10. Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA, Stewart FM, Heard SO (1997) Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant 3:45–49

    PubMed  CAS  Google Scholar 

  11. Balaguer H, Galmes A, Ventayol G, Bargay J, Besalduch J (2004) Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion 44:1260–1261

    PubMed  Google Scholar 

  12. Kroger N, Renges H, Sonnenberg S, Kruger W, Gutensohn K, Dielschneider T, ­Cortes-Dericks L, Zander AR (2002) Stem cell mobilisation with 16 microg/kg vs 10 microg/kg of G-CSF for allogeneic transplantation in healthy donors. Bone Marrow Transplant 29:727–730

    PubMed  CAS  Google Scholar 

  13. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  14. Yoder MC, Williams DA (1995) Matrix molecule interactions with hematopoietic stem cells. Exp Hematol 23:961–967

    PubMed  CAS  Google Scholar 

  15. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    PubMed  CAS  Google Scholar 

  16. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    PubMed  CAS  Google Scholar 

  17. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    PubMed  CAS  Google Scholar 

  18. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    PubMed  CAS  Google Scholar 

  19. Kiel MJ, Acar M, Radice GL, Morrison SJ (2009) Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4:170–179

    PubMed  CAS  Google Scholar 

  20. Kiel MJ, Radice GL, Morrison SJ (2007) Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1:204–217

    PubMed  CAS  Google Scholar 

  21. Zanjani ED, Flake AW, Almeida-Porada G, Tran N, Papayannopoulou T (1999) Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function. Blood 94:2515–2522

    PubMed  CAS  Google Scholar 

  22. Vermeulen M, Le PF, Gagnerault MC, Mary JY, Sainteny F, Lepault F (1998) Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood 92:894–900

    PubMed  CAS  Google Scholar 

  23. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    PubMed  CAS  Google Scholar 

  24. Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM (2001) Molecular pathways in bone marrow homing: dominant role of alpha[4]beta [1] over beta [2]-integrins and selectins. Blood 98:2403–2411

    PubMed  CAS  Google Scholar 

  25. Levesque JP, Leavesley DI, Niutta S, Vadas M, Simmons PJ (1995) Cytokines increase human hemopoietic cell adhesiveness by ­activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 181: 1805–1815

    PubMed  CAS  Google Scholar 

  26. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98:1289–1297

    PubMed  CAS  Google Scholar 

  27. van der Loo JC, Xiao X, McMillin D, Hashino K, Kato I, Williams DA (1998) VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Invest 102:1051–1061

    PubMed  Google Scholar 

  28. Katayama Y, Hidalgo A, Peired A, Frenette PS (2004) Integrin alpha4beta7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor. Recruitment into bone marrow following transplantation. Blood 104:2020–2026

    PubMed  CAS  Google Scholar 

  29. Qian H, Georges-Labouesse E, Nystrom A, Domogatskaya A, Tryggvason K, Jacobsen SE, Ekblom M (2007) Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood 110:2399–2407

    PubMed  CAS  Google Scholar 

  30. Qian H, Tryggvason K, Jacobsen SE, Ekblom M (2006) Contribution of alpha6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with alpha4 integrins. Blood 107:3503–3510

    PubMed  CAS  Google Scholar 

  31. Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, Wakeham A, Shahinian A, Catzavelos C, Rak J, Furlonger C, Zakarian A, Simard JJ, Ohashi PS, Paige CJ, Gutierrez-Ramos JC, Mak TW (1997) CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90:2217–2233

    PubMed  CAS  Google Scholar 

  32. Sackstein R (2004) The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing. J Invest Dermatol 122:1061–1069

    PubMed  CAS  Google Scholar 

  33. Katayama Y, Hidalgo A, Furie BC, Vestweber D, Furie B, Frenette PS (2003) PSGL-1 ­participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood 102:2060–2067

    PubMed  CAS  Google Scholar 

  34. Frenette PS, Subbarao S, Mazo IB, von Andrian UH, Wagner DD (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci USA 95:14423–14428

    PubMed  CAS  Google Scholar 

  35. Grassinger J, Haylock DN, Storan MJ, Haines GO, Williams B, Whitty GA, Vinson AR, Be CL, Li S, Sorensen ES, Tam PP, Denhardt DT, Sheppard D, Choong PF, Nilsson SK (2009) Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 114: 49–59

    PubMed  CAS  Google Scholar 

  36. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic ­progenitor cells. Blood 106:1232–1239

    PubMed  CAS  Google Scholar 

  37. Forde S, Tye BJ, Newey SE, Roubelakis M, Smythe J, McGuckin CP, Pettengell R, Watt SM (2007) Endolyn (CD164) modulates the CXCL12-mediated migration of umbilical cord blood CD133+ cells. Blood 109: 1825–1833

    PubMed  CAS  Google Scholar 

  38. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603

    PubMed  CAS  Google Scholar 

  39. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106:1331–1339

    PubMed  CAS  Google Scholar 

  40. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973

    PubMed  CAS  Google Scholar 

  41. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    PubMed  CAS  Google Scholar 

  42. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    PubMed  CAS  Google Scholar 

  43. Jo DY, Rafii S, Hamada T, Moore MA (2000) Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest 105:101–111

    PubMed  CAS  Google Scholar 

  44. Kim CH, Broxmeyer HE (1998) In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91:100–110

    PubMed  CAS  Google Scholar 

  45. Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008

    PubMed  CAS  Google Scholar 

  46. McKinney-Freeman S, Goodell MA (2004) Circulating hematopoietic stem cells do not efficiently home to bone marrow during homeostasis. Exp Hematol 32:868–876

    PubMed  CAS  Google Scholar 

  47. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936

    PubMed  CAS  Google Scholar 

  48. Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J (2003) Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102: 1249–1253

    PubMed  CAS  Google Scholar 

  49. Chervenick PA, Boggs DR (1971) In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 37:131–135

    PubMed  CAS  Google Scholar 

  50. Goodman JW, Hodgson GS (1962) Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714

    PubMed  CAS  Google Scholar 

  51. Bhattacharya D, Czechowicz A, Ooi AG, Rossi DJ, Bryder D, Weissman IL (2009) Niche recycling through division-independent egress of hematopoietic stem cells. J Exp Med 206:2837–2850

    PubMed  CAS  Google Scholar 

  52. Kurnick JE, Robison WA (1971) Colony growth of human peripheral white blood cells in vitro. Blood 37:136–141

    PubMed  CAS  Google Scholar 

  53. McCredie KB, Hersh EM, Freireich EJ (1971) Cells capable of colony formation in the peripheral blood of man. Science 171: 293–294

    PubMed  CAS  Google Scholar 

  54. Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77:211–213

    PubMed  CAS  Google Scholar 

  55. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318

    PubMed  CAS  Google Scholar 

  56. Broxmeyer HE, Hangoc G, Cooper S, Campbell T, Ito S, Mantel C (2007) AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci 1106:1–19

    PubMed  CAS  Google Scholar 

  57. Devine SM, Vij R, Rettig M, Todt L, McGlauchlen K, Fisher N, Devine H, Link DC, Calandra G, Bridger G, Westervelt P, DiPersio JF (2008) Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 112:990–998

    PubMed  CAS  Google Scholar 

  58. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G, Dale DC (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:2728–2730

    PubMed  CAS  Google Scholar 

  59. Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra G, Christensen J, Wood B, Price TH, Dale DC (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 45:295–300

    PubMed  CAS  Google Scholar 

  60. Pelus LM, Bian H, Fukuda S, Wong D, Merzouk A, Salari H (2005) The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 33:295–307

    PubMed  CAS  Google Scholar 

  61. Abraham M, Biyder K, Begin M, Wald H, Weiss ID, Galun E, Nagler A, Peled A (2007) Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells 25:2158–2166

    PubMed  CAS  Google Scholar 

  62. Iyer CV, Evans RJ, Lou Q, Lin D, Wang J, Kohn W, Yan LZ, Pulley S, Peng SB (2008) Rapid and recurrent neutrophil mobilization regulated by T134, a CXCR4 peptide antagonist. Exp Hematol 36:1098–1109

    PubMed  CAS  Google Scholar 

  63. Shen H, Cheng T, Olszak I, Garcia-Zepeda E, Lu Z, Herrmann S, Fallon R, Luster AD, Scadden DT (2001) CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol 166:5027–5033

    PubMed  CAS  Google Scholar 

  64. Zhong R, Law P, Wong D, Merzouk A, Salari H, Ball ED (2004) Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells. Exp Hematol 32:470–475

    PubMed  CAS  Google Scholar 

  65. Cramer DE, Wagner S, Li B, Liu J, Hansen R, Reca R, Wu W, Surma EZ, Laber DA, Ratajczak MZ, Yan J (2008) Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells 26: 1231–1240

    PubMed  CAS  Google Scholar 

  66. Patchen ML, Liang J, Vaudrain T, Martin T, Melican D, Zhong S, Stewart M, Quesenberry PJ (1998) Mobilization of peripheral blood progenitor cells by Betafectin PGG-Glucan alone and in combination with granulocyte colony-stimulating factor. Stem Cells 16: 208–217

    PubMed  CAS  Google Scholar 

  67. Frenette PS, Weiss L (2000) Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-­dependent and independent mechanisms. Blood 96: 2460–2468

    PubMed  CAS  Google Scholar 

  68. Sweeney EA, Priestley GV, Nakamoto B, Collins RG, Beaudet AL, Papayannopoulou T (2000) Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc Natl Acad Sci USA 97:6544–6549

    PubMed  CAS  Google Scholar 

  69. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T (2002) Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 99:44–51

    PubMed  CAS  Google Scholar 

  70. Kubonishi S, Kikuchi T, Yamaguchi S, Tamamura H, Fujii N, Watanabe T, Arenzana-Seisdedos F, Ikeda K, Matsui T, Tanimoto M, Katayama Y (2007) Rapid hematopoietic progenitor mobilization by sulfated colominic acid. Biochem Biophys Res Commun 355: 970–975

    PubMed  CAS  Google Scholar 

  71. Albanese P, Caruelle D, Frescaline G, Delbe J, Petit-Cocault L, Huet E, Charnaux N, Uzan G, Papy-Garcia D, Courty J (2009) Glycosaminoglycan mimetics-induced mobilization of hematopoietic progenitors and stem cells into mouse peripheral blood: structure/function insights. Exp Hematol 37:1072–1083

    PubMed  CAS  Google Scholar 

  72. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S, Glodek A, Honczarenko M, Spruce LA, Janowska-Wieczorek A, Lambris JD, Ratajczak MZ (2003) Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 101:3784–3793

    PubMed  CAS  Google Scholar 

  73. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT, Janowska-Wieczorek A, Wetsel RA, Ross GD, Ratajczak MZ (2004) Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 103:2071–2078

    PubMed  CAS  Google Scholar 

  74. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T (1997) Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 90:4779–4788

    PubMed  CAS  Google Scholar 

  75. Kikuta T, Shimazaki C, Ashihara E, Sudo Y, Hirai H, Sumikuma T, Yamagata N, Inaba T, Fujita N, Kina T, Nakagawa M (2000) Mobilization of hematopoietic primitive and committed progenitor cells into blood in mice by anti-vascular adhesion molecule-1 antibody alone or in combination with ­granulocyte colony-stimulating factor. Exp Hematol 28:311–317

    PubMed  CAS  Google Scholar 

  76. Papayannopoulou T, Priestley GV, Nakamoto B (1998) Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 91:2231–2239

    PubMed  CAS  Google Scholar 

  77. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK, DiPersio JF (2009) BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 114:1340–1343

    PubMed  CAS  Google Scholar 

  78. Ting M, Day B, Spanevello M, Boyd A (2010) Activation of ephrin A proteins influences hematopoietic stem cell adhesion and trafficking patterns. Exp Hematol 38: 1087–1098

    PubMed  CAS  Google Scholar 

  79. Scalia R, Kochilas L, Campbell B, Lefer AM (1996) Effects of defibrotide on leukocyte-endothelial cell interaction in the rat mesenteric vascular bed: role of P-selectin. Methods Find Exp Clin Pharmacol 18:669–676

    PubMed  CAS  Google Scholar 

  80. Pellegatta F, Lu Y, Radaelli A, Zocchi MR, Ferrero E, Chierchia S, Gaja G, Ferrero ME (1996) Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion. Br J Pharmacol 118:471–476

    PubMed  CAS  Google Scholar 

  81. Carlo-Stella C, Di NM, Magni M, Longoni P, Milanesi M, Stucchi C, Cleris L, Formelli F, Gianni MA (2002) Defibrotide in ­combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice. Cancer Res 62:6152–6157

    PubMed  CAS  Google Scholar 

  82. Fukuda S, Bian H, King AG, Pelus LM (2007) The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 110:860–869

    PubMed  CAS  Google Scholar 

  83. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ, Pelus LM (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 97:1534–1542

    PubMed  CAS  Google Scholar 

  84. Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103: 110–119

    PubMed  CAS  Google Scholar 

  85. Pruijt JF, Verzaal P, van OR, de Kruijf EJ, van Schie ML, Mantovani A, Vecchi A, Lindley IJ, Willemze R, Starckx S, Opdenakker G, Fibbe WE (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 99:6228–6233

    PubMed  CAS  Google Scholar 

  86. Papayannopoulou T, Priestley GV, Bonig H, Nakamoto B (2003) The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 101:4739–4747

    PubMed  CAS  Google Scholar 

  87. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA (2005) Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–891

    PubMed  CAS  Google Scholar 

  88. Lucas D, Battista M, Shi PA, Isola L, Frenette PS (2008) Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3:364–366

    PubMed  CAS  Google Scholar 

  89. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    PubMed  CAS  Google Scholar 

  90. Fauser AA, Messner HA (1979) Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neurtophilic granulocytes and erythroblasts. Blood 53:1023–1027

    PubMed  CAS  Google Scholar 

  91. Fauser AA, Messner HA (1978) Granuloerythropoietic colonies in human bone marrow, peripheral blood, and cord blood. Blood 52:1243–1248

    PubMed  CAS  Google Scholar 

  92. Hara H, Ogawa M (1978) Murine hemopoietic colonies in culture containing normoblasts, macrophages, and megakaryocytes. Am J Hematol 4:23–34

    PubMed  CAS  Google Scholar 

  93. Johnson GR, Metcalf D (1977) Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci USA 74:3879–3882

    PubMed  CAS  Google Scholar 

  94. McLeod DL, Shreve MM, Axelrad AA (1976) Induction of megakaryocyte colonies with platelet formation in vitro. Nature 261: 492–494

    PubMed  CAS  Google Scholar 

  95. Pelus LM, Broxmeyer HE, Kurland JI, Moore MA (1979) Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin. J Exp Med 150: 277–292

    PubMed  CAS  Google Scholar 

  96. Broxmeyer HE, Mejia JA, Hangoc G, Barese C, Dinauer M, Cooper S (2007) SDF-1/CXCL12 enhances in vitro replating capacity of murine and human multipotential and macrophage progenitor cells. Stem Cells Dev 16:589–596

    PubMed  CAS  Google Scholar 

  97. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    PubMed  CAS  Google Scholar 

  98. Ploemacher RE, van der Sluijs JP, Voerman JS, Brons NH (1989) An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74:2755–2763

    PubMed  CAS  Google Scholar 

  99. Ploemacher RE, van der Sluijs JP, van Beurden CA, Baert MR, Chan PL (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78:2527–2533

    PubMed  CAS  Google Scholar 

  100. Ploemacher RE, van der Loo JC, van Beurden CA, Baert MR (1993) Wheat germ agglutinin affinity of murine hemopoietic stem cell subpopulations is an inverse function of their long-term repopulating ability in vitro and in vivo. Leukemia 7:120–130

    PubMed  CAS  Google Scholar 

  101. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563–1570

    PubMed  CAS  Google Scholar 

  102. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 87:3584–3588

    PubMed  CAS  Google Scholar 

  103. Lemieux ME, Rebel VI, Lansdorp PM, Eaves CJ (1995) Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow “switch” cultures. Blood 86:1339–1347

    PubMed  CAS  Google Scholar 

  104. Kretchmar AL, Conover WR (1970) A difference between spleen-derived and bone marrow-derived colony-forming units in ability to protect lethally irradiated mice. Blood 36:772–776

    PubMed  CAS  Google Scholar 

  105. Harrison DE (1972) Lifesparing ability (in lethally irradiated mice) of W-W mouse marrow with no macroscopic colonies. Radiat Res 52:553–563

    PubMed  CAS  Google Scholar 

  106. Harrison DE (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55:77–81

    PubMed  CAS  Google Scholar 

  107. Harrison DE, Jordan CT, Zhong RK, Astle CM (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 21:206–219

    PubMed  CAS  Google Scholar 

  108. Shen FW, Tung JS, Boyse EA (1986) Further definition of the Ly-5 system. Immunogenetics 24:146–149

    PubMed  CAS  Google Scholar 

  109. Taswell C (1981) Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol 126:1614–1619

    PubMed  CAS  Google Scholar 

  110. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 87: 8736–8740

    PubMed  CAS  Google Scholar 

  111. Szilvassy SJ, Lansdorp PM, Humphries RK, Eaves AC, Eaves CJ (1989) Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood 74:930–939

    PubMed  CAS  Google Scholar 

  112. Purton LE, Scadden DT (2007) Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1:263–270

    PubMed  CAS  Google Scholar 

  113. Vos O, Dolmans MJ (1972) Self-renewal of colony forming units (CFU) in serial bone marrow transplantation experiments. Cell Tissue Kinet 5:371–385

    PubMed  CAS  Google Scholar 

  114. Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–927

    PubMed  CAS  Google Scholar 

  115. Ogden DA, Mickliem HS (1976) The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22:287–293

    PubMed  CAS  Google Scholar 

  116. Rosendaal M, Hodgson GS, Bradley TR (1979) Organization of haemopoietic stem cells: the generation-age hypothesis. Cell Tissue Kinet 12:17–29

    PubMed  CAS  Google Scholar 

  117. Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58

    PubMed  CAS  Google Scholar 

  118. Coffman RL, Weissman IL (1981) A monoclonal antibody that recognizes B cells and B cell precursors in mice. J Exp Med 153:269–279

    PubMed  CAS  Google Scholar 

  119. Muller-Sieburg CE, Whitlock CA, Weissman IL (1986) Isolation of two early B lymphocyte progenitors from mouse marrow: a committed pre-pre-B cell and a clonogenic Thy-1-lo hematopoietic stem cell. Cell 44:653–662

    PubMed  CAS  Google Scholar 

  120. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    PubMed  CAS  Google Scholar 

  121. Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89:1502–1506

    PubMed  CAS  Google Scholar 

  122. Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, Kina T, Nakauchi H, Nishikawa S (1991) Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 174:63–71

    PubMed  CAS  Google Scholar 

  123. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050

    PubMed  CAS  Google Scholar 

  124. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    PubMed  CAS  Google Scholar 

  125. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, Jacobsen SE (2005) Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723

    PubMed  CAS  Google Scholar 

  126. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, Sasaki Y, Jacobsen SE (2001) Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    PubMed  CAS  Google Scholar 

  127. Ogawa M, Tajima F, Ito T, Sato T, Laver JH, Deguchi T (2001) CD34 expression by murine hematopoietic stem cells. Developmental changes and kinetic alterations. Ann N Y Acad Sci 938:139–145

    PubMed  CAS  Google Scholar 

  128. Chen CZ, Li M, de GD, Monti S, Gottgens B, Sanchez MJ, Lander ES, Golub TR, Green AR, Lodish HF (2002) Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc Natl Acad Sci USA 99: 15468–15473

    PubMed  CAS  Google Scholar 

  129. Chen CZ, Li L, Li M, Lodish HF (2003) The endoglin(positive) sca-1(positive) rhodamine(low) phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells. Immunity 19:525–533

    PubMed  Google Scholar 

  130. Balazs AB, Fabian AJ, Esmon CT, Mulligan RC (2006) Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107:2317–2321

    PubMed  CAS  Google Scholar 

  131. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121

    PubMed  CAS  Google Scholar 

  132. Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924–930

    PubMed  CAS  Google Scholar 

  133. Chen J, Ellison FM, Keyvanfar K, Omokaro SO, Desierto MJ, Eckhaus MA, Young NS (2008) Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp Hematol 36:1236–1243

    PubMed  CAS  Google Scholar 

  134. Srour EF, Yoder MC (2005) Flow cytometric analysis of hematopoietic development. Methods Mol Med 105:65–80

    PubMed  Google Scholar 

  135. Johnnidis JB, Camargo FD (2008) Isolation and functional characterization of side population stem cells. Methods Mol Biol 430:183–193

    PubMed  CAS  Google Scholar 

  136. Challen GA, Boles N, Lin KK, Goodell MA (2009) Mouse hematopoietic stem cell identification and analysis. Cytometry A 75: 14–24

    PubMed  Google Scholar 

  137. Hill JM, Syed MA, Arai AE, Powell TM, Paul JD, Zalos G, Read EJ, Khuu HM, Leitman SF, Horne M, Csako G, Dunbar CE, Waclawiw MA, Cannon RO III (2005) Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 46:1643–1648

    PubMed  CAS  Google Scholar 

  138. Lindemann A, Rumberger B (1993) Vascular complications in patients treated with granulocyte colony-stimulating factor (G-CSF). Eur J Cancer 29A:2338–2339

    PubMed  CAS  Google Scholar 

  139. Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT (2001) Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood 97:3313–3314

    PubMed  CAS  Google Scholar 

  140. Kang EM, Areman EM, David-Ocampo V, Fitzhugh C, Link ME, Read EJ, Leitman SF, Rodgers GP, Tisdale JF (2002) Mobilization, collection, and processing of peripheral blood stem cells in individuals with sickle cell trait. Blood 99:850–855

    PubMed  CAS  Google Scholar 

  141. Stiff P, Gingrich R, Luger S, Wyres MR, Brown RA, LeMaistre CF, Perry J, Schenkein DP, List A, Mason JR, Bensinger W, Wheeler C, Freter C, Parker WRL, Emmanouilides C (2000) A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 26:471–481

    PubMed  CAS  Google Scholar 

  142. Anderlini P, Przepiorka D, Seong C, Smith TL, Huh YO, Lauppe J, Champlin R, Korbling M (1997) Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim. Transfusion 37:507–512

    PubMed  CAS  Google Scholar 

  143. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Loffler H, Hunter A, Russell NH (1995) Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 85:1666–1672

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants HL069669 and HL096305 (to LMP). JH is supported by training grant HL007910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Pelus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hoggatt, J., Pelus, L.M. (2012). Hematopoietic Stem Cell Mobilization with Agents Other than G-CSF. In: Kolonin, M., Simmons, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 904. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-943-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-943-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-942-6

  • Online ISBN: 978-1-61779-943-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics